Albumin Specific Molecular Lumino-Materials: From Quantification to Bioimaging

A Thesis

submitted

by

Gourab Dey (Roll No: D12049)

for the award of the degree of

Doctor of Philosophy

School of Basic Sciences

Indian Institute of Technology Mandi, India

February, 2018

To the memories of Baganma

and

To my beloved parents

Indian Institute of Technology Mandi

Declaration by the Research Scholar

This is to certify that the thesis entitled "Albumin Specific Molecular Lumino-Materials:

From Quantification to Bioimaging" submitted by me to the Indian Institute of

Technology, Mandi for the award of the degree of Doctor of Philosophy (Ph.D.) is a

bonafide record of research work carried out by me under the supervision of Dr. Subrata

Ghosh. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due

acknowledgements have been made wherever the work described is based on the findings

of other investigators.

Mandi

Place: Mandi

Signature of Research Scholar

Technology

Date:

Thesis Certificate

This is to certify that the thesis entitled "Albumin Specific Molecular Lumino-Materials: From Quantification to Bioimaging" submitted by Mr. Gourab Dey to the Indian Institute of Technology, Mandi for the award of the degree of Doctor of Philosophy (Ph.D.) is a bonafide record of research work carried out by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

Place: Mandi Dr. Subrata Ghosh

Date:

Associate Professor
School of Basic Science

Indian Institute of Technology, Mandi Himachal Pradesh -175001, India

Acknowledgements

I take this opportunity to thank all those who have helped me in the successful completion of work leading to this thesis and in making my days memorable during my PhD. First and foremost, I express my gratitude to my supervisor, Dr. Subrata Ghosh for his constant and never tiring guidance which brought the best out of me in these years. Especially, I thank him for giving me the opportunity to work with serum albumin protein. Learning and working with him has been one of the most enriching and fruitful experiences of my life which made me a more industrious individual than ever before. I also wish to thank him and his wife Dr. Rik Rani Koner for making IIT Mandi my second home. I would like to thank Dr. Prosenjit Mondal for his constant support and encouragement in my research.

I express my sincere thanks to my institute IIT Mandi and its administration for all the facilities and necessary support for my research. I convey my gratitude to my doctoral committee members, Dr. Chayan Kanti Nandi, Dr. Suman Kalyan Pal, Dr. Tulika P Srivastava and Dr. Anil Kishan for their invaluable advice and encouragement.

I wish to thank previous and present research group members Dr. Sougata Sinha, Dr. Sunil kumar, Dr. Pankaj Gaur, Mr. M. Venkateswarurlu, Mr. Nagaraju Nakka, Ms. Bidisha Biswas, Mr. Swadhapriya Bhukta for their support and help and encouragement during my research work.

It is said that good friends are not easy to found and I have been lucky to have many. Thanks to Syamantak, Sougata, Tushar, Srimanta, Himadri for making my early days of IIT Mandy truly memorable. I am grateful to have friends like Debasmita, Syamantak, Amarjit, Sudeb, Supriyo, Aranya, Partha, Ankita, Sohanlal, Duni, Deepak, Ashutosh, Ankur, Ngaraju, Subrata, Shilpa,

Tripti, Abhishek (Gupta), Diksha, Sourabh, Faria, Reena, Debarati, Sumit, Abhishek, Tanmoy, Abhik, Jalim, Navneet, for their constant help and encouragement. I would like to specially thank Chinmoy for being my perfect roommate and a true friend with his never-ending support.

I am extremely grateful to the peer-reviewers of my accepted and rejected research papers. It would have been impossible for me to carry out my research successfully and write this thesis today, without their critical assessment of my work and valuable suggestions to improve them. I am also grateful to the editors for accepting my research papers in their esteemed journals, giving me an opportunity to communicate my research findings. I want thank the organizers of various national conferences, which I attended in the last few years, to provide me the opportunity to present my research with talks and posters.

Last but not the least, I am, needless to mention, indebted to my parents and my beloved brother without whose constant encouragement and boundless support this day of mine would have remained a dream.

Table of Contents

Abbreviations	1
Abstract	3
Chapter 1: Introduction	6
1.1. Structure and Feature of Serum Albumin	7
1.2. Importance of determining the Concentration of Albumin in Blood Serur	n8
1.3. Importance of determining the Concentration of Albumin in urine	10
1.4. Procedures For Determining the Concentration of Albumin in Biofluids.	11
1.4.1. Immunoelectrophoresis	11
1.4.2. Capillary Electrophoresis	13
1.4.3. Dye Based Albumin Detection	14
1.5. Fluorescence	17
1.6. Fluorescence Signaling Mechanism	19
1.6.1. Photon Induced Electron Transfer	19
1.6.2. Forster Resonance Energy Transfer (FRET)	21
1.6.3. Twisted Internal Charge Transfer (TICT)	24
1.7. Albumin Selective Fluorescent Probe	26
1.8. NIR Dye Based Bioimaging	29
Chapter: 2: Functional Molecular Lumino-Materials to Probe Serum Albumir Phase Selective Staining Through Non-Covalent Fluorescent Labeling	ıs: Solid
2.1. Overview	37
2.2. Design and Synthesis	40
2.3.1. Optical Behavior	41
2.3.2. Photostability of the Probe	
2.3.3. Effect of pH and Salt Strength on Labeling Efficiency	52

2.3.4. Understanding of Interaction through Time Resolved Study	
•	
2.3.5. Dye Displacement and Docking Study	
2.3.6. Circular Dichroism of Protein-Probe Complex	
2.3.7. Quantifying of Albumin in Blood Serum	
2.3.8. Selective Staining of Albumin in Gel Electrophores	is63
3. Conclusions	67
4. Materials and Methods	68
References	85
Chapter: 3 On optical signalling in biofluids: nondenaturing for serum albumins	photostable molecular probe
3.1. Overview	91
3.2. Results and Discussions	94
3.2.1. Optical Behavior	94
3.2.2. Structure Property Relationship Study	<u>.</u> 99
3.2.3. Time Resolved Fluorescence Lifetime Measurement	nt101
3.2.4. Effect of pH and Salt Strength on Labeling Efficien	ncy102
3.2.5. Fluorescence Quenching Study	103
3.2.6. Dye Displacement and Docking study	107
3.2.7. FRET Mechanism Study	111
3.2.8. Circular Dichroism and Photostability Study	113
3.2.9. Practical Application	116
4. Conclusions	118
5. Materials and Methods	119
References	137
Chapter 4: Renal clearable new NIR probe: precise quantification fatty liver disease state identification through tissue specivivo	
4.1. Overview	143
4.2. Results and Discussion	146

4.2.1. Optical Behaviour	146
4.2.2. Quantification of Albumin in Different Biofluids	154
4.2.3. In vitro Cellular Imaging with CyG	157
4.2.4. Non Invasive in Vivo Fluorescence Imaging	159
4.2.5. Progressive Liver Disease Prognosis Information	167
5.Conclusions	170
6. Materials and Methods	170
References	181
Conclusion and Future Prospects	186
Appendix	190
Publications	200