Investigation of Physical Properties of Rare Earth and Transition Metal Based Oxides and Intermetallics Showing Significant Magnetocaloric Effect

A Thesis

submitted by

Mohit Kumar Sharma (Roll No D13013)

for the award of the degree

of

Doctor of Philosophy

School of Basic Sciences

Indian Institute of Technology Mandi

Kamand, Himachal Pradesh-175005, India

October, 2018

Indian Institute of Technology Mandi Mandi-175001, Himachal Pradesh, India

Declaration by the Scholar

I hereby declare that the entire work embodied in this Thesis is the result of investigations carried out by me in the *School of Basic Sciences*, Indian Institute of Technology Mandi, India, under the supervision of *Dr. Kaustav Mukherjee*, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place:

Signature

Date:

Name: Mohit Kumar Sharma

Indian Institute of Technology Mandi Mandi-175001, Himachal Pradesh, India

Declaration by the Research Advisor

I hereby certify that the entire work in this Thesis has been carried out by **Mohit Kumar Sharma** under my supervision in *School of Basic Sciences*, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma.

Signature: Name of the Guide: Dr. Kaustav Mukherjee Date:

Dedicated to my dear parents and my family

Acknowledgement

First of all, praises and thanks to the Almighty God, for showering His blessings for the accomplishment of my research work.

This thesis is no exception, I pay sincere and special appreciations to several individuals. Many minds have indirectly or directly contributed to the research work presented in this thesis.

I feel the honour to express my sincere gratitude and warm regards to my advisor Dr. Kaustav Mukherjee. This work would not have been possible without his constant support, valuable guidance, encouragement on several occasions, numerous exciting discussions related to this research. Under his guidance, I successfully overcame many difficulties and learned a lot. I appreciate all the contributions of time, ideas and funding to make my PhD experience productive and stimulating. He always knew where to look for the answers to obstacles while leading me to the right source, theory and perspective.

I am grateful to Prof. T. A. Gonsalves, Director, IIT Mandi, for his help and support during my tenure in the institute. I thank my thesis doctoral committee members, Dr. Chandra Shekhar Yadav, Dr. Ajay Soni, Dr. Bindu Radhamany, Dr. Pradeep Parmeswaran and Dr Sudhir Kumar Pandey. Their valuable advice, constructive criticism and extensive discussions about my work were a great help. I am also thankful to Dr. Suman Kalyan Pal for his co-operation on various occasions. I am also thankful to the office staffs Mr. Sumeet, Mr. Sushil Kumar Pal, Ms. Stuti, Ms. Sushma, Mr. Kuldeep, Mr. Monu, Mr. Prakash, Mr. Manoj, Mr. Suneel, Mr. Pawan, Mr. Anoop and Mr. Prateek for their support.

I take this opportunity to sincerely acknowledge, Indian Institute of Technology (IIT), Mandi, for providing me with the financial assistance during my Ph. D. tenure. I would like to acknowledge experimental facilities of Advanced Material Research Centre (AMRC), IIT Mandi. I also thank Prof E. V. Sampathkumaran, Tata Institute of Fundamental Research (TIFR) Mumbai for dielectric and electric polarization measurements.

I am thankful to my lab-mates for providing a stimulating and fun-filled environment. I am ever grateful to Somnath, Mandeep, Karan, Juhi, Niraj, Shailja, Gurpreet, and Sonu for their cooperation and fruitful discussions at several steps of research. I would like to extend my thanks to Surender Lal and Kavita for helping me in my thesis work. I am also thankful to Pankaj, Mahesh, Rajiv, Jitendra, Satyanarayan, Suraj, Birender, Vikas, Adil, Fauzul, Rajesh, Rohit, Salam, Sharad, Vipin, Rajkumar, Devendra Chaudhary, Gaurav, Shushant, Dheeraj, Praveen, Deepansu and Hawa Singh for their care and moral support. They have helped me to survive all the stress and not letting me giveup.

Finally, I would like to thank my beloved family members, for their unconditional love and support during my good and bad times. I couldn't have completed this work without their consistent moral support.

Contents

Chapter 1: Introduction					
1.1	Magnetism: Some basic aspects				
1.2	Exchange interactions				
1.3	Mixed transition metal oxides				
1.4	Binary intermetallics				
1.5	Exchange bias, frustration and glass-like magnetic state				
1.6	Magnetocaloric effect				
1.7	Multiferroicity				
1.8	Aim of the present work				
1.9	Framework of thesis				
References					
Chaj	oter 2: Preparation and characterization of compounds	under			
-	tigation	under 27			
-					
inves	tigation	27			
inves 2.1	Solid State Ceramic route and Arc melting technique	27 28			
inves 2.1 2.2 2.3	Solid State Ceramic route and Arc melting technique Structural characterization using powder x-ray diffraction	27 28 29			
inves 2.1 2.2 2.3 2.	Solid State Ceramic route and Arc melting technique Structural characterization using powder x-ray diffraction Compounds under investigation	27282932			
inves 2.1 2.2 2.3 2.	 Solid State Ceramic route and Arc melting technique Structural characterization using powder x-ray diffraction Compounds under investigation 3.1 Synthesis and structural analysis of YFe_{0.5}Cr_{0.5}O₃ 	27282932			
inves 2.1 2.2 2.3 2. 2.	Solid State Ceramic route and Arc melting technique Structural characterization using powder x-ray diffraction Compounds under investigation 3.1 Synthesis and structural analysis of YFe _{0.5} Cr _{0.5} O ₃ 3.2 Synthesis and structural analysis of Dy _{1-x} A _x Fe _{0.5} Cr _{0.5} O ₃ series	 27 28 29 32 32 			
inves 2.1 2.2 2.3 2. 2.	 Solid State Ceramic route and Arc melting technique Structural characterization using powder x-ray diffraction Compounds under investigation 3.1 Synthesis and structural analysis of YFe_{0.5}Cr_{0.5}O₃ 3.2 Synthesis and structural analysis of Dy_{1-x}A_xFe_{0.5}Cr_{0.5}O₃ series (A = Gd, Er and La and Ca). 	 27 28 29 32 32 			
inves 2.1 2.2 2.3 2. 2.	 Solid State Ceramic route and Arc melting technique Structural characterization using powder x-ray diffraction Compounds under investigation 3.1 Synthesis and structural analysis of YFe_{0.5}Cr_{0.5}O₃ 3.2 Synthesis and structural analysis of Dy_{1-x}A_xFe_{0.5}Cr_{0.5}O₃ series (A = Gd, Er and La and Ca). 3.3 Synthesis and structural analysis of R₅Pd₂ (R = Tb, Dy, and Er) 	 27 28 29 32 32 33 			
inves 2.1 2.2 2.3 2. 2. 2. 2.	 Solid State Ceramic route and Arc melting technique Structural characterization using powder x-ray diffraction Compounds under investigation 3.1 Synthesis and structural analysis of YFe_{0.5}Cr_{0.5}O₃ 3.2 Synthesis and structural analysis of Dy_{1-x}A_xFe_{0.5}Cr_{0.5}O₃ series (A = Gd, Er and La and Ca). 3.3 Synthesis and structural analysis of R₅Pd₂ (R = Tb, Dy, and Er) and Dy₅PdNi 	 27 28 29 32 32 33 35 			

Chap	oter 3: Exchange bias in a mixed metal oxide based magne	tocaloric			
comp	oound YFe _{0.5} Cr _{0.5} O ₃	41			
3.1	Introduction	42			
3.2	Magnetization and heat capacity studies				
3.3	Magnetocaloric effect				
3.4	Exchange bias study				
3.5	Summary				
	References	53			
Chap	oter 4: Magnetic and universal magnetocaloric behav	viour of			
Dy _{0.8}	R _{0.2} Fe _{0.5} Cr _{0.5} O ₃ (R = Er, Gd and La)	55			
4.1	Introduction	56			
4.2	Magnetization, heat capacity and Arrot plots studies				
4.3	Effect of rare earth substitution on magnetocaloric properties				
4.4	Power law behaviour and universal scaling	63			
4.5	Summary	66			
	References	67			
Chap	oter 5: Effect of rare earth (Er and Gd) substitution on the	nagnetic			
and 1	multiferroic properties of DyFe _{0.5} Cr _{0.5} O ₃	69			
5.1	Introduction	70			
5.2	Magnetization and heat capacity studies	71			
5.3	Magnetocaloric effect	75			
5.4	Temperature and magnetic field response of dielectric behaviour	76			
5.5	Electric polarization study	79			
5.6	Summary	81			
	References	82			

Chapt	ter 6: Enhancement of magnetic ordering temperature and	1				
magnetodielectric coupling by hole doping in a multiferroic						
DyFe ₀	850.5 Cr _{0.5} O ₃	5				
6.1	Introduction 86	5				
6.2	Effect of hole doping on the magnetic and magnetocaloric					
	properties of DyFe _{0.5} Cr _{0.5} O ₃ 87	7				
6.3	Dielectric and magnetodielectric properties of Dy _{0.6} Ca _{0.4} Fe _{0.5} Cr _{0.5} O ₃ 90)				
6.4	Summary 93	3				
	References 94	1				
Chapt	Chapter 7: Complex magnetic behaviour and evidence of a superspin					
glass s	state in a binary intermetallic compound Er5Pd2 97	7				
7.1	Introduction 98	3				
7.2	DC magnetization study 99)				
7.3	Field cooled and zero field cooled memory effect 103	3				
7.4	Time dependent magnetization study 104	1				
7.5	AC susceptibility measurement 105	5				
7.6	Nonlinear DC magnetic susceptibility 108	3				
7.7	Magnetocaloric effect 110)				
7.8	Summary 112	2				
	References 113	3				
Chapter 8: Nonequilibrium behaviour and evidence of double glass-like						
magnetic state in R ₅ Pd ₂ (Tb, Dy) and Dy ₅ PdNi magnetocaloric						

8.1 Introduction 118

117

compounds

8.2 Evidence of double glass transition and magnetocaloric studies of Tb₅Pd₂ 119
8.3 Magnetic and magnetocaloric properties of Dy₅Pd₂ and Dy₅PdNi 128

8	8.4	Universal scaling analysis and power law study of R_5Pd_2	
		(R=Tb, Er and Dy) and Dy ₅ PdNi	135
8	8.5	Summary	139
		References	140
С	hapt	er 9: Conclusion and future work	145
9	9.1	Conclusions	146
1	9.2	Future work	148
L	ist of	fpublications	151