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Preface 

Thermoelectric materials can directly and reversibly convert waste heat into electricity 

and thus can be used as power generators as well as refrigerators. Being a purely solid-state 

based technology, thermoelectric modules and devices are silent and reliable, which works with 

carbon emission free and vibration less mode. Considering these unique advantage, 

thermoelectric materials can be utilized to increase the green energy resources. The 

advancement in thermoelectric materials is associated with modification in electronic band 

structures and phonons dispersions caused by doping, defects, cage-rattlers, solid solutions, 

nanostructuring. The performance of any thermoelectric material is governed by a 

dimensionless figure of merit (ZT 2 , , electrical 

conductivity, thermal conductivity, respectively, and T is absolute temperature. The correlation 

of three interrelated parameters clarifies that there must be a minimum heat flow while 

maintaining a high charge flow across the material. The major challenge of thermoelectric 

technology is their poor efficiency which limits broader applications of thermoelectrics. 

Considering requirements of high performance thermoelectric materials, the decoupling of 

charge and phonon transport is one of the most crucial aspects. Until 1990s, it was believed 

that the alloy limit of the thermal conductivity cannot be defeated and the improvement in 

thermoelectric materials ZT had been limited to ~1, with primarily studied thermoelectric 

materials being Bi2Te3, Sb2Te3, PbTe, their alloys and SiGe. In the past few decades, the rapid 

growth in thermoelectric research have been achieved not only by quantum confinement effect 

and the phonon glass electron crystal concept but also by various interesting strategies such as 

manipulating the band structure, introducing resonant states near Fermi level and using 

nanostructures to control the electron and phonon transport. As a results, plenty of new 

thermoelectric materials have been explored with existing materials such as V2-VI3 compounds, 
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IV-VI compounds, half-Heusler alloys, filled skutterudites, and clathrates, zintl phases, 

superionic compounds and organic materials.  

Chalcogenides (sulfur, selenium and tellurium) are basically rich in phase and structural 

diversity with vast range of physical properties from metallic to superconducting to 

semiconducting and insulating behavior, which offers an assured degree of freedom for 

tailoring their properties. As a consequence, these materials are suitable for thermoelectric 

devices, infra-red and photo detectors, solar cells and infrared lasers application. Among state 

of the art chalcogenides thermoelectric materials, Bi2Te3 and PbTe are the most studied and 

champion materials with high figure of merit at room temperature and high temperature 

applications, respectively. Recently, SnTe has gained enormous interest as a substitute to PbTe 

because of analogous crystal structure and electronic band structure along with non-toxic and 

environment friendly option. However, the intrinsic Sn vacancies resulting in high carrier 

concentration is the major hurdle for its efficient usage in thermoelectric application. 

Additionally, with the possibility of variety substitution, high ionic conductivity and inherently 

poor thermal conductivity, Argyrodite superionic compounds provide an interesting platform 

to play around with the power factor only. Therefore, it is essential to understand and tune the 

different thermoelectric parameters of SnTe and other superionic conductors for thermoelectric 

research.      

The objective of the present thesis work is to investigate and understand the physical 

properties of environment friendly crystalline bulk metal chalcogenides such as doped-SnTe 

and superionic Argyrodite (Ag8MX6, where M is Ge, Sn and X is Se, Te), for thermoelectric 

applications. Conventional solid state melting reaction have been used to prepare the 

polycrystalline samples. Various characterization techniques and physical property 

measurements have been carried out on the prepared samples. In SnTe, the optimization of 

charge carriers have been realized by using excess Sn, and temperature dependent transport 
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studies demonstrate the enhanced Seebeck coefficient and poor thermal conductivity in Mn 

doped self-compensated Sn1.03Te samples. The systematic increment of magnetic moments as 

well as effective thermal mass of charge carriers leading to an overall enhancements in the 

power factor, which has been observed and investigated based on magnetization, anomalous 

Hall effect, heat capacity and high temperature transport measurements in doped SnTe. Further, 

temperature dependent transport results and first-principles calculations show that with heavy 

atomic mass and strong spin-orbit coupling, mild rare earth (Yb) doping in SnTe can improve 

thermoelectric performance over other dopants via band-engineering. In addition, the 

investigations have been done on argyrodite type structure Ag8MX6, as these compounds have 

intrinsically low thermal conductivity and high Seebeck coefficient. The temperature 

dependence thermoelectric studies are carried out on Ag8GeSe6, Ag8SnSe6 and Ag8GeTe6 

across structural phase transition and we have demonstrated that cubic phase Ag8SnSe6 has an 

efficient thermoelectric properties over Ag8GeSe6. Moreover, the interesting phenomena 

related to thermoelectric parameters such as low energy Einstein optical modes have been 

discussed for Argyrodite based large unit cell superionic compounds (Ag8GeSe6, Ag8SnSe6 and 

Ag8GeTe6).  

The present thesis is divided into eight chapters. The brief outline of the chapters are 

discussed below:  

 

Chapter 1: Introduction  

This chapter contains the background of the research problem, objectives and overview 

of the present thesis. Brief introduction of thermoelectric effects followed by various 

challenges in thermoelectric research and the adopted strategies to improve thermoelectric 

figure of merit such as charge carrier optimization, band structure engineering, multiple phonon 
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scattering and intrinsic low thermal conductivity have been discussed. At the end, detail of the 

investigated thermoelectric materials from the thesis have been presented. 

 

Chapter 2: Experimental Methods 

This chapter presents the details of methodology applied for synthesis and processing 

of the materials used in this thesis. Here, solid state melt grown technique has been used to 

prepare the polycrystalline compounds of doped SnTe and Argyrodites. Various techniques 

used for characterizations such as X-Ray Diffraction, Field Emission Scanning Electron 

Microscopy, Raman Spectroscopy, UV-Visible Spectroscopy and Differential Scanning 

Calorimetry have been elaborated in detail. For measuring the physical properties of the 

investigated materials, we have used Physical Property Measurement System and Magnetic 

Property Measurement System and the details have been presented. The details of homemade 

setup for Seebeck Coefficient and Resistivity Measurements are also presented.  

 

Chapter 3: Crystal Anharmonicity and Soft-Phonons Modes in Self-compensated 

Sn1.03Te with Mn doping 

This chapter describes the crystalline anharmonicity in self-compensated Sn1.03Te with 

Mn doping, which has been studied to understand the observed glassy thermal conductivity. 

First, the excess amount of Sn has been doped to optimize the inherent vacancies and a partial 

control of charge carriers have been achieved in SnTe, followed by doping of isovalent Mn. 

The relatively poor thermal conductivity has been understood and explained based on the point 

defect scattering, appearance of soft phonon modes and impurity localized modes. The 

observed soft phonon mode and impurity localized mode in Raman spectra have been explained 

based on the created anharmonicity in Sn1.03Te crystal with Mn doping. In addition, Mn doping 
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modifies the electronic band structure leading to high hole effective mass leading to enhanced 

Seebeck coefficient.  

 

Chapter 4: Magnetic Entropy and Modified Thermal Transport of Mn doped Sn1.03Te 

This chapter presents magnetic and thermoelectric properties of Mn doped self-

compensated Sn1.03Te in perspective of its dilute magnetic nature. The systematic increment of 

magnetic moments, increase in effective thermal mass of charge carriers and overall 

enhancements in power factor has been explained based on magnetization, anomalous Hall 

Effect, heat capacity, high temperature transport measurements, high carrier concentration and 

interaction between charge carriers with magnetic moments.  

 

Chapter 5: Valence Band Engineering in Rare Earth (Yb) doped SnTe 

  This chapter elaborates on the strategy of rare earth element (Yb) doping to enhance 

the thermoelectric performance of SnTe at very low doping concentrations. Temperature 

dependent transport data and first-principles calculations show that with heavy atomic mass 

and strong spin-orbit coupling, even a 5% doping of Yb in SnTe can converge the two valence 

bands more effectively than Mn at the same doping level.  This chapter proposes that doping 

with rare earth elements is an efficient alternative to improve thermoelectric performance of 

SnTe via effective valence band-engineering and improved electronic density of states near Fermi 

level.  

 

Chapter 6: Power Factor Enhancement of Poor Thermal Conductor Argyrodite 

  This chapter emphasizes on thermoelectric performance of bulk chalcogenides based 

Argyrodites Ag8GeSe6 and Ag8SnSe6 across structural phase transition. Due to liquid-like 

behaviour of cations in a relatively larger unit cell, the Argyrodites exhibits inherent ultralow 
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lattice thermal conductivity. In this chapter, Ag8SnSe6 has been demonstrated as an efficient 

thermoelectric material over Ag8GeSe6 due to higher value of carrier concentration, large 

electronegativity difference between Ge and Sn and high mobility in high temperature cubic 

phase. Further, the extremely low thermal conductivity for both the samples has been explained 

with weakly bonded Ag ions to rigid anion sub lattice and presence of low frequency Einstein 

optic modes which provide the possibility of decoupling of charge and heat transport. 

  

Chapter 7: Improved Thermoelectricity in Ag8GeTe6 with High Carrier Mobility    

This chapter presents the thermoelectric studies of Te-based argyrodite compound 

Ag8GeTe6. The room temperature results reveal ultralow thermal conductivity and high carrier 

mobility leading to improved thermoelectric performance. In these compound, the ultralow 

lattice thermal conductivity due to weak chemical bond, complex structure and presence of 

- 8GeTe6 and high 

-  

 

Chapter 8: Conclusions and Future direction 

  This chapter summarizes the overall remarks on the results that are obtained in the 

current thesis work and provides the future research direction followed by new opportunities 

to research on bulk metal chalcogenides materials. 
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