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ABSTRACT

Markowitz, in his seminal work, posited the concepts of portfolio optimization and diversi-
fication that had been instrumental in the understanding of financial markets. Markowitz
formulated the portfolio selection problem as an optimization problem in which the risk,
measured through the variance of the portfolio returns, is minimized at a given level of
desirable expected portfolio return. Undoubtedly, Markowitz’s theory had an everlasting
impact on both academic research and financial industry. The mean-variance optimization
problem serves as a starting point in the actual practice. Even though the foundational
framework of the Markowitz theory remains same but in practice, many institutional rules,
investor specific guidelines or portfolio manager’s personal preferences must be included
in the optimization framework. To include these practical considerations, classical mean-
variance portfolio optimization problem is extended in several directions. Generally, when
institutional rules and/or investor’s preferences are reflected in the portfolio optimization
problem, it leads to complicated constraints that pose a serious challenge to the solution
algorithms.

Markowitz theory has a myopic viewpoint, i.e., it was developed for portfolio construc-
tion in a single period. Given the inputs, Markowitz optimization model provides optimal
allocations of assets which are assumed to hold at the end of the investment horizon. How-
ever, in real-scenarios, risk-return characteristics are continuously changing in the market.
Hence asset allocations are need to be re-optimize and rebalance with respect to chang-
ing market conditions. Further, rebalancing of a portfolio incurs transaction costs which
are inevitable. These costs, when considered in an ex-post manner, often lead to inefficient
portfolios. Hence, consideration of transaction costs at the time of the portfolio optimiza-

tion and rebalancing becomes essential.
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Transaction costs are generally modelled as non-linear, discontinuous function of the
change in the volume of assets in the portfolio. Hence, classical optimization packages
are unable to handle portfolio optimization models involving these costs. Recently, Multi
Objective Evolutionary Algorithm (MOEA)s has been emerged as a promising alternative for
handling optimization problems having complex objectives and constraints. In the present
study, MOEAs are investigated, and a modified decomposition based MOEA is proposed to
achieve better convergence-diversity statistics than several state-of-the-art and recent MOEA
over benchmark Multi-objective Optimization Problems (MOPs).

In the second part of the present work, MOEAs are adapted for solving portfolio optimiza-
tion models involving practical constraints. We have designed repair algorithms for dealing
with practical constraints and established their effectiveness in the context of MOEAs. The
adaptations of MOEAs along with the proposed candidate generation mechanism and re-
pair algorithm handle all the constraints without requirement of any traditional constraint
handling procedure.

A tri-objective portfolio optimization model with total transaction costs as one of the
objectives along with risk and return objectives is proposed. Inclusion of cost objective
introduces several cost-related equality constraints, that are difficult to handle by traditional
constraint handling approaches used in MOEAs. Hence, a specialized repair algorithm is
designed for handling these equality constraints. The proposed repair algorithm is also
amenable to a larger class of cost models used in realistic scenarios. The study investigates
portfolio rebalancing problem involving several practical constraints along with different
risk-measures, viz., variance, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR)

In a nutshell, this study establishes that the designing specialized problem-specific algo-
rithms for dealing with realistic constraints is an effective alternative. Further, proposed
adaptations of MOEAs are also advantageous in the context of portfolio optimization and
rebalancing. Although repair algorithms designed in this study can fit in any general pro-
cedure of population-based algorithms, we found out adapted Non-dominating Sorting
Genetic Algorithm (NSGA)-II achieve superior empirical results in comparison to other state-

of-the-art and some recent MOEAs used in the comparisons.
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