## Study of Combustion Characteristics of Premixed and

### **Diffusion Flame with Hydrogen and Methane Fuel**

A THESIS

submitted by

### PUNIT KUMAR (S14004)

for the award of the degree

of

### **MASTER OF SCIENCE**

(by Research)



## School of Engineering INDIAN INSTITUTE OF TECHNOLOGY MANDI

August 2017

#### **Declaration by the Research Scholar**

This is certify that the Thesis entitled **"Study of combustion characteristics of premixed and diffusion flame with hydrogen and methane fuel"**, submitted by me to the Indian Institute of Technology Mandi for the award of the Degree of Master of Science (by research) is a bonafide record of research work carried out by me under the supervision of *Dr. P Anil Kishan*. The content of this Thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any Degree or Diploma.

Place: IIT Mandi Date: Signature:

Punit Kumar

#### **Declaration by the Research Advisor**

This is certify that the Thesis entitled **"Study of combustion characteristics of premixed and diffusion flame with hydrogen and methane fuel"**, submitted by *Punit Kumar* to the Indian Institute of Technology Mandi for the award of the Degree of Master of Science (by research) is a bonafide record of research work carried out by him under my supervision. The content of this Thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any Degree or Diploma.

Signature:

Dr. P Anil Kishan Assistant Professor School of Engineering Indian Institute of Technology Mandi

Date:

## Acknowledgement

Foremost, I would like to acknowledge Dr. P Anil Kishan for all the support and guidance which he has provided me at times. In absence of his insights and directions, this work could certainly not be completed. I would also like to thanks Dr. Atul Dhar for all the support, brainstorming sessions and time with which he has helped me to carry out this research. Annual progress committee members: Dr. Vishal Singh Chauhan, Dr. Dhiraj Patil, Dr. Arpan Gupta and Dr. C S Yadav, are also appreciated for their timely suggestions and directions.

I would also like to mention and thank the lab members and my dear friends Mr. Priybrat Sharma, and Mr. Sarthak Nag. Their technical discussion and insight have always helped to resolve the issues at hand. It is always fun to work in the lab with them.

Special thanks to all my friends at IIT Mandi, Davinder Singh, Sumeet Sharma, Ajay Bhardwaj, Arpit Bhardwaj, Manoj Dhiman, Tushar Kant Swain, Abhishek Banagunde, Neha Thakur, for all the moral support and for bear with me and my boredom. All the trekking trips and bike rides will always be memorable. Lastly I would like to thanks my parents, brothers and sisters to support me and believe in me.

Punit Kumar

# Contents

| Acknowledgement                                                                                                                                                                                                                                                                                                                                                         | v                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Contents                                                                                                                                                                                                                                                                                                                                                                | vii                                           |
| List of Figures                                                                                                                                                                                                                                                                                                                                                         | ix                                            |
| Nomenclature                                                                                                                                                                                                                                                                                                                                                            | xi                                            |
| Abstract                                                                                                                                                                                                                                                                                                                                                                | xii                                           |
| 1 Introduction                                                                                                                                                                                                                                                                                                                                                          | 1                                             |
| <ul> <li>1.1 Theory and Literature Survey <ul> <li>1.1.1 Combustion and Flame</li> <li>1.1.2 Premixed Flame</li> <li>1.1.3 Flame front</li> <li>1.1.4 Flame Stretch</li> <li>1.1.5 Diffusion Flame</li> </ul> </li> <li>1.2 Objective <ul> <li>1.3 Thesis Outline</li> </ul> </li> <li>2 Design and Development of Constant Volume Combustion Chamber (CVCC)</li> </ul> | 3<br>3<br>4<br>5<br>8<br>13<br>16<br>16<br>16 |
| 2.1 Introduction                                                                                                                                                                                                                                                                                                                                                        | 19                                            |
| <ul> <li>2.2 Design Methodology</li> <li>2.2.1 Sizing</li> <li>2.2.2 Visual System</li> <li>2.2.3 Fuel Supply System</li> <li>2.2.4 Temperature control system</li> <li>2.2.5 Ignition and Camera Triggering System</li> <li>2.2.6 Pressure measurement System</li> </ul>                                                                                               | 20<br>21<br>23<br>23<br>25<br>25              |
| 2.3 Experimental Sequence                                                                                                                                                                                                                                                                                                                                               | 26                                            |
| 2.4 Image Processing and flame velocity measurement                                                                                                                                                                                                                                                                                                                     | 27                                            |
| 2.5 Schematic Diagram and Setup                                                                                                                                                                                                                                                                                                                                         | 30                                            |
| 3 Experimental and numerical studies of flame characteristics of premixed combustion                                                                                                                                                                                                                                                                                    | 33                                            |
| 3.1 Introduction                                                                                                                                                                                                                                                                                                                                                        | 33                                            |
| <ul> <li>3.2 Flame kernel growth study of spark ignited hydrogen air premixed combustion at engine conditions</li> <li>3.2.1 Numerical Modeling</li> <li>3.2.2 Results and Discussion</li> <li>3.3 Numerical Investigation of Pressure and Temperature Influence on Flame</li> </ul>                                                                                    | <b>33</b><br>34<br>36                         |
| Speed in CH <sub>4</sub> – H <sub>2</sub> Premixed Combustion                                                                                                                                                                                                                                                                                                           | 45                                            |
| 3.3.1 Numerical Approach                                                                                                                                                                                                                                                                                                                                                | 45                                            |

|                                                                                                             | 3.3.2                | Results and Discussion                                                                              | 48  |  |
|-------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|-----|--|
| 4 Diffusion Flame characteristics of H <sub>2</sub> – CH <sub>4</sub> in coflow burner                      |                      |                                                                                                     | 66  |  |
|                                                                                                             | 4.1                  | Introduction                                                                                        | 66  |  |
|                                                                                                             | 4.2                  | Computational Details                                                                               | 67  |  |
|                                                                                                             | 4.3                  | Boundary Conditions                                                                                 | 69  |  |
|                                                                                                             | 4.4                  | Validation                                                                                          | 71  |  |
|                                                                                                             | 4.5                  | Effect of H <sub>2</sub> on CH <sub>4</sub> flame                                                   | 73  |  |
|                                                                                                             | 4.6                  | Effect of Fuel inlet velocity CH <sub>4</sub> – H <sub>2</sub> flame structure and emissions in JHC |     |  |
| (Jet in Hot Coflow) burner                                                                                  |                      |                                                                                                     | 77  |  |
|                                                                                                             | 4.6.1                | Effect of fuel inlet velocity on structure of the flame                                             | 77  |  |
|                                                                                                             | 4.6.2                | Effect of fuel inlet velocity on Emission                                                           | 85  |  |
| 4.7 Investigation of Recirculation of burned gases on CH <sub>4</sub> – H <sub>2</sub> diffusion flame in a |                      |                                                                                                     |     |  |
|                                                                                                             | Jet in ]             | Hot Coflow (JHC) burner                                                                             | 92  |  |
|                                                                                                             | 4.7.1                | Effect of oxygen concentration on emissions                                                         | 92  |  |
|                                                                                                             | 4.7.2                | Effect of dilution with CO <sub>2</sub> concentration on emissions                                  | 98  |  |
| 5                                                                                                           | Con                  | clusion and Future Plan                                                                             | 102 |  |
| R                                                                                                           | REFERENCES           |                                                                                                     |     |  |
| A                                                                                                           | APPENDIX             |                                                                                                     |     |  |
| L                                                                                                           | List of Publications |                                                                                                     |     |  |