# MECHANISTIC INSIGHTS INTO INTER-/INTRA-MOLECULAR THIOLYSIS OF SULFONATE ESTERS: REACTION DYNAMICS, ORBITAL OVERLAP vs MOLECULAR REACTIVITY, INDUCED PROXIMITY EFFECT AND DIRECTED TRANSANNULAR INTERACTION

### A THESIS

Submitted in partial fulfilment of the requirements for the award of the degree

of

### **DOCTOR OF PHILOSOPHY**

by

### MANGILI VENKATESWARULU (D12054)



# SCHOOL OF BASIC SCIENCES INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI-175001

March, 2018

DEDICATED TO

MY MOTHERLAND

INDLA

AND

ITS

FARMERS, TEACHERS,

SOLDIERS, RESEARCHERS

AND

LOVING PARENTS

Indian Institute of Technology Mandi Mandi, Himachal Pradesh – 175001

Indian Institute of Technology

भारतीय प्रौद्योगिकी संस्थान मण्डी मण्डी, हिमाचल प्रदेश, 175001

**Declaration by the Research Scholar** 

This is to certify that the thesis entitled "Mechanistic insights into inter-/intra-

molecular thiolysis of sulfonate esters: reaction dynamics, orbital overlap vs molecular

reactivity, induced proximity effect and directed transannular interaction" submitted by

me to the Indian Institute of Technology Mandi for the award of the degree of Doctor of

Philosophy is a bonafide record of research work carried out by me under the supervision of

Dr. Subrata Ghosh. The contents of this thesis, in full or in parts, have not been submitted to

any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due

acknowledgements have been made wherever the work described is based on the findings of

other investigators.

Mandi 175001

Date:

Signature of Research Scholar



#### **Thesis Certificate**

This is to certify that the thesis entitled "Mechanistic insights into inter-/intra-molecular thiolysis of sulfonate esters: reaction dynamics, orbital overlap vs molecular reactivity, induced proximity effect and directed transannular interaction" submitted by Mr. Mangili Venkateswarulu to the Indian Institute of Technology, Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

Mandi 175001

Research Guide

# Acknowledgements

While pursuing my Ph.D degree, I met many people who encouraged me during ups and downs and provided continuous support of their experience and knowledge throughout this journey. First and foremost I would like to thank my advisor Dr. Subrata Ghosh for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research, writing of this thesis and to grow as a researcher. I could not have imagined having a better mentor for my doctoral study in IIT Mandi.

I also want to express my everlasting gratitude to the stimulating discussions of Doctoral committee members, **Dr. A. Chakraborty**, **Dr. P. F. Siril**, **Dr. P. C. Parameshwaran**, and **Dr. Anil Kishan** who continually conveyed a spirit of adventure in regard to research and scholarship. I am grateful to well-known Professors for reviewing the manuscripts and thesis in spite of their busy schedule. I am also grateful to CSIR for the financial support during the tenure. I shall ever remain grateful to all of them.

I would also like to express my deep gratitude to my teachers Dr. Venkata Raman, Dr. Sudhakar Babu, Dr, Sriramulu, Dr. L. K. Ravindranth. I am blessed that I met them in early stage of my education and I am still learning the science and how to live life every day from them.

I express my sincere thanks to the Director, IIT Mandi for his support and encouragements, especially, the research facilities at Advanced Materials Research Center (AMRC), IIT Mandi is gratefully acknowledged. It was a nice experience to work with Dr. Rik Rani Koner, and Dr. V. Krishnan. Thanks to our collaborators Dr. P. Mondal (IIT Mandi) for performing biological studies and theoretical studies.

It was nice to share times with friends like Rambabu, K. L. Reddy, N. N. Raju, K. Ravi,

Y. Midathala, Sunil, Manu Shree, Dushyant and Sunil in institution campus. I have absolutely

no hesitation in specially conveying warm thanks to my close friends Rambabu, Anil,

Rama Krishna, Niranjan Naik, Ramya Jyothi, Manu Shree and N. N. raju who supported me

whole heartedly with their amazing love, support and advice. I thankfully acknowledge my

friend Sougata Sinha, Sunil Kumar and Pankaj Gaur with whom I started my research carrier.

You provided eternal optimism and encouragement in me.

At last but not the least, thanks to my parents and brother, what I am today is just because

of them. Words will be less to describe the support, encouragement and unconditional love

provided by my family.

Mangili Venkateswarulu

ii

# **Table of Contents**

| Acknowledgements                                                        | i                       |
|-------------------------------------------------------------------------|-------------------------|
| Abbreviation                                                            | iii                     |
| Abstract                                                                | iv                      |
| Chapter 1 Brief literature overview                                     |                         |
| IA.1. Preface                                                           | 2                       |
| 1A.2. Advantages of sulfonic acid functionality                         |                         |
| 1A.2.1. Sulfonic acid functional medicines                              | 3                       |
| 1A.2.2. Sulfonic acid functional water-soluble fluorescent probes and c | atalyst4                |
| IA.2.3. Sulfonic acid functional detergents                             | 5                       |
| 1A.2.4. Sulfonic acid functional polymers                               | 6                       |
| 1A.3. Sulfonate ester functionality advantages and problems             | 6                       |
| 1A.3.1 Advantages of sulfonate esters                                   | 7                       |
| 1A.3.1.1. Sulfonate esters as protecting group                          | 7                       |
| 1A.3.1.2. Sulfonate ester functional fluorescent probes                 | 8                       |
| 1A.3.2. Problems with sulfonate ester functionality                     | 10                      |
| 1A.4. Hydrogen sulfide                                                  | 13                      |
| 1A.5. Motivation and Scope of the Thesis                                | 13                      |
| 1A.6. Objectives and Scope                                              | 15                      |
| IA.7. Description of the research work                                  | 15                      |
| IB. References.                                                         | 18                      |
| Chapter 2 At the molecular level through photophysical studies          | structural implications |
| on the reactivity of dual site sensitive positional isomers (sulf       | onate esters) towards a |
| gasotransmitter (H <sub>2</sub> S)                                      |                         |
| 2A.1. Overview                                                          | 24                      |
| 2A.2. Results and discussion.                                           | 26                      |
| 2A.2.1. Design and synthesis of the probe                               | 26                      |
| 2A.2.2. Photo-physical studies                                          | 27                      |
| 2A.2.3. Single crystal analysis                                         | 34                      |
| 2A.2.4. Theoretical study                                               | 38                      |
| 2A.2.5. Conclusion.                                                     | 41                      |
| 2B. Experimental section                                                |                         |
| 2B.1. General information                                               | 43                      |
| 2B.2. UV-vis and fluorescence titrations                                | 43                      |
| 2B.3. DFT calculations                                                  | 44                      |

| 2B.4. Synthetic Procedures and Characterization                                      | 44  |  |  |
|--------------------------------------------------------------------------------------|-----|--|--|
| 2B.5. Single-crystal X-ray diffraction studies                                       | 47  |  |  |
| 2C. References.                                                                      | 50  |  |  |
|                                                                                      |     |  |  |
| Chapter 3 Modified atomic orbital overlap: molecular level proof of the nucleophilic |     |  |  |
| cleavage propensity of dinitrophenol-based probes                                    |     |  |  |
| 3A.1. Overview                                                                       | 55  |  |  |
| 3A.2. Results and discussion.                                                        | 58  |  |  |
| 3A.2.1. Design and synthesis of the probe                                            | 58  |  |  |
| 3A.2.2. Photo-physical studies                                                       | 59  |  |  |
| 3A.2.3. Single crystal analysis                                                      | 64  |  |  |
| 3A.2.4. Theoretical study                                                            | 71  |  |  |
| 3A.2.5. Kinetic Studies                                                              | 72  |  |  |
| 3A.2.6. Conclusion                                                                   | 73  |  |  |
| 3B. Experimental section                                                             |     |  |  |
| 3B.1. General information                                                            | 75  |  |  |
| 3B.2. DFT calculations                                                               | 75  |  |  |
| 3B.3. Synthetic Procedures and Characterization                                      | 75  |  |  |
| 3B.4. Single-crystal X-ray diffraction studies                                       | 81  |  |  |
| 3C. References                                                                       | 86  |  |  |
| Chapter 4 Induced proximity effect: mechanistic insight                              |     |  |  |
| 4A.1. Overview                                                                       |     |  |  |
| 4A.2. Results and discussion                                                         | 94  |  |  |
| 4A.2.1. Design and synthesis of the probe                                            | 94  |  |  |
| 4A.2.2. Photo-physical studies                                                       |     |  |  |
| 4A.2.3. Theoretical study                                                            | 104 |  |  |
| 4A.2.4. Conclusion                                                                   | 109 |  |  |
| 4B. Experimental section                                                             |     |  |  |
| 4B. I. General information                                                           | 110 |  |  |
| 4B.2. Preparation of the stock solutions                                             | 110 |  |  |
| -                                                                                    | 110 |  |  |
| 4B.4. Synthetic Procedures and Characterization                                      | 111 |  |  |
| 4C. References                                                                       | 120 |  |  |

# **Chapter 5 Materials and Methods**

| Chapter 6 Conclusions and Future Prospective                                 | .126 |
|------------------------------------------------------------------------------|------|
| Publications                                                                 | 193  |
| Appendix                                                                     |      |
| Conclusion: finding of the thesis                                            |      |
| 5.6. References                                                              | 125  |
| 5.5. The details information for the determination of the limit of detection | .125 |
| 5.4. Quantum Yield Calculation                                               | 124  |
| 5.3. Preparation of the test solution                                        | 123  |
| 5.2. Materials                                                               | .123 |
| 5. 1. Instruments                                                            | 123  |