Rational design of carbon supported noble metal based electrocatalysts for renewable energy applications

a thesis

submitted by

Mohammad Saquib (D14008)

for the award of the degree of

Doctor of Philosophy

School of Basic Sciences Indian Institute of Technology Mandi, Mandi Himachal Pradesh - 175005, INDIA July, 2019

Dedicated to

The weaker section of the society

Thesis Certificate

This is to certify that the thesis titled "**Rational design of carbon supported noble metal based** electrocatalysts for renewable energy applications", submitted by Mohammad Saquib to the Indian Institute of Technology Mandi, for the award of the degree of Doctor of Philosophy, is a bona fide record of the research work done by him under my supervision. The contents of this thesis, in either full or parts, have not been submitted to any other institute or university for the award of any diploma or degree.

Dr. Aditi Halder

(Supervisor)

School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Kamand

Himachal Pradesh - 175005, INDIA

email: aditi@iitmandi.ac.in

Declaration by the Ph.D. Scholar

I hereby declare that the entire work incorporated in this thesis are the result of investigations carried out by me in the School of Basic Sciences, Indian Institute of Technology Mandi, under the supervision of Dr. Aditi Halder and it has not been submitted elsewhere for the award of any diploma or degree. All the acknowledgments have been made wherever the work described the findings of other investigators.

Mohammad Saquib

Enrollment No.: D14008 School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh - 175005 Place: Kamand, Mandi Date: July, 2019

Acknowledgements

To begin with, I would like to express my sincere gratitude to my Ph.D. supervisor, Dr. Aditi Halder, for her pronounced supervision, help and inspirational guidance during my research work. It was Dr. Halder who discovered my aptitude towards research and put in the necessary efforts to groom and helped me to convey my best. In the field of science, I am today is a continuous scrupulous counseling, mentor and support from her. I have grasped the value of innovations, consistent hard work, precision and accuracy from her energetic persona in research. I have a great respect to her for supervising me in the field of electrocatalysis from her scientific intuitions, in depth knowledge of the subject and immense experience. Her dedication, passion and collaboration for research are highly motivation for me which I will reflect in my academic life.

I manifest special thanks to Dr. Viswanath Balakrishnan for his keen observations, highly valuable and motivational suggestions which have enriched my understanding in nanomaterials.

I am delighted to thank the members of Doctoral Committee Dr. Chayan Kanti Nandi, Dr. Rahul Vaish, Dr. Abhimanew Dhir and Dr. Venkata Krishnan for their critical comments and valued suggestions and encouragements for evaluation of the thesis work.

I would like to thank my colleagues from inter-disciplinary fields for their theoretical and experimental research helps. This includes Davinder Singh, Piyush Awasthi, Dr. Rajiv K. Maurya, Imran Ahmed, Rohit Pathak, Dr. Sunil Dutt, Amir Mushtaq, Vikas Sharma, Fauzul Mobeen, Dr. Himmat Singh Kushwaha, Dauood Saleem, Raghib Ashraf, Faheem Ahmad and Dr. Mohd Asif, Dr. Mohd Talib and Dr. Zulqarnain. I wish to thank all my supportive and helping lab members; Ankita Mathur, Rohit Kaundal, Rajkumar yadav, Arpit Bhardwaj, Shifali Bajaj, Nitika Arya, Vishal, Ravinder Kaushik, Chetna Madan, Pankaj, Lalita and Bhandhana.

I sincerely acknowledge MHRD for the fellowship during my PhD research period. I thank Isita Kanti Nandi, Arjun, Karam and other staffs of AMRC, IIT Mandi, for their kind support.

I acknowledge my brothers; Mohd Hamid, Mohd Abid and Mohd Khalid for their highest gratitude and support, who stood with me during all the duration of my PhD. I thank my sister in law Dr. Faizan Ahmad and all my sisters for their consistent moral boost. I thank my uncle Ashfaq Ahmad for motivation to pursue higher studies. I thank my Father-in-law Zaheen Ahmad and Mother-in-law Shagufta Bano. I thanks all my in laws brother and sisters; Dr. Rubana Zaheen, Iqra Zaheen, Dr. Alisha Siddiqui, Syed Raheel Husain, Rishu Tiwari and Mohd Haris Iqbal. Very special thanks to my deceased parents; Roqaiyya Bano (mother) and Ishtiyaq Ahmad (father) without their affection, support and care I would not have reached to achieve this.

The words are limited for thanking my beloved wife Ibteesam Zaheen for her dedication, love, care and reliable support to bring this thesis on completion.

Finally, a special thanks to my daughter Lawaiza Maysam who has intensified my passion of research with her love.

MOHAMMAD SAQUIB

July, 2019

Table of contents

THESIS CERTIFICATE	i
DECLRATION	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	ix
LIST OF TABLES	xxi
Chapter 1: Introduction	1
1.1. Catalysis	1
1.2. Electrocatalysis	2
1.3. Fundamental effects in the design of rational electrocatalysts	3
1.3.1. Ensemble effect	4
1.3.2. Geometric effect	5
1.3.3. Ligand effect	6
1.3.4. Support effect	7
1.4. Applications of electrocatalysis	8
1.4.1. Fuel cells	9
1.4.1.1. Direct Formic Acid Fuel Cells (DFAFCs)	10
1.4.2. Hydrogen Evolution Reaction (HER) and Oxygen Evolution	
Reaction (OER)	11
1.4.3. Oxygen Reduction Reaction (ORR)	12
1.5. Carbon dioxide reduction	14

1.6. Scope of thesis	15
References	17
Chapter 2: Study of geometric strain for hydrogen evolution reaction	27
2.1. Introduction	28
2.2. Experimental	35
2.2.1. Materials	35
2.2.2. Synthesis of platinum nanoparticles (NPs) on Vulcan Carbon (Pt/C)	35
2.2.3. Synthesis of platinum and cobalt alloy and dealloy nanoparticles	
on Vulcan Carbon (Pt ₃ Co/C)	36
2.2.4. Sample fabrication	36
2.2.5. Electrochemical measurements	37
2.2.6. Sample Characterizations	38
2.3. Results and Discussion	39
2.3.1. Microstructural Characterizations	39
2.3.2. Electrochemical measurement for Hydrogen Evolution	
Reaction (HER)	46
2.4. Conclusions	53
References	55
Chapter 3: Study of support and ligand effects for carbon dioxide reduction	63
3.1. Introduction	64
3.2. Experimental	66
3.2.1. Synthesis of Functionalized Graphene Oxide (GO)	67
3.2.2. Synthesis of gold nanoparticles (NPs) on Reduced	

vi

Graphene Oxide (RGOAu)	67
3.2.3. Synthesis of Ag, Au and AuAg NPs on Reduced	
Graphene Oxide (RGOAg, RGOAu and RGOAuAg)	68
3.2.4. Ink preparation	68
3.2.5. Electrochemical reduction of CO_2 and analysis of gaseous	
products formed by Gas Chromatography	68
3.3. Results and Discussion	71
3.3.1. Microstructural Characterizations	71
3.3.2. Electrochemical measurements of CO ₂ reduction on RGOAu/GCE	84
3.4. Conclusion	103
References	105
Chapter 4: Study of ensemble effect for formic acid oxidation	110
4.1. Introduction	111
4.2. Experimental	113
4.2.1. Materials	113
4.2.2. Synthesis of graphene oxide (GO)	113
4.2.3. Synthesis of platinum nanoparticles (NPs) on Reduced	
Graphene Oxide (RGO-Pt)	114
4.2.4. Synthesis of bimetallic platinum and nickel nanoparticles	
on graphene oxide (RGO-Pt _{1.19} Ni _{4.74})	114
4.2.5. Sample fabrication	115
4.2.6. Electrochemical measurements	115
4.2.7. Sample Characterizations	116

4.3. Results and Discussion	116
4.4. Conclusions	134
References	136
Chapter 5: Study of ensemble and support effects for hydrogen evolution reaction	143
5.1. Introduction	144
5.2. Experimental Section	145
5.2.1. Materials	145
5.2.2. Synthesis of Graphene Oxide (GO)	146
5.2.3. Synthesis of TiO_2 nanoflakes	146
5.2.4. Synthesis of silver nanoparticles on reduced graphene oxide	
support (Ag/RGO)	146
5.2.5. Synthesis of TiO_2 nanoflakes on reduced graphene oxide	
support (TiO ₂ /RGO)	146
5.2.6. Synthesis of Ag NPs elaborated on TiO_2 nanoflakes supported	
on reduced graphene oxide (Ag/TiO ₂ /RGO)	147
5.2.7. Sample characterizations	147
5.2.8. Electrochemical Measurements	148
5.2.9. Sample fabrication	148
5.3. Results and Discussion	148
5.4. Conclusions	170
References	172
Summary and future work	177
List of publications	180