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ABSTRACT

A primary goal of cloud service administrators is effective resource provisioning. Prediction of
future resource usage and proactive prediction of resource contention failures are two important
functions of a resource provisioning system. Towards this goal, this work focuses on improving
these two functions by analysing the nature of cloud resource usage workloads and by applying

statistical and machine learning techniques.

The thesis first explores both experimental and analytical investigations to indicate the
presence of long range dependence in cloud resource usage workloads. Thus, we compare
the prediction capabilities of future resource usage prediction using models without and with

modelling of long range dependence in resource usage workloads.

However, the performance of any resource may depend on other resources as well. Hence,
this thesis proposes multivariate extensions of future resource usage prediction models. This
work analyses six different multivariate frameworks based on regression models of all available
resource metrics and a subset of relevant set of metrics. To support the selection of a relevant
set of features, we propose to use two desirable characteristics of feature selection techniques,

namely prediction performance and stability to support the dynamic cloud environment.

This thesis next proposes online variations for future resource usage prediction models.
Here, the prediction models are updated in real time based on the error produced by the model. In
this context, we analyse gradient descent and Levenberg-Marquardt parameter update methods.
Further as long short term memory models for future resource usage prediction have a large
number of trainable parameters, we propose sparse variations of these prediction models where

only a few parameters are retained to support fast online adaptation of prediction models.
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In addition to future resource usage prediction, this thesis also proposes a resource contention
failure prediction system. Here, the heteroscedastic nature of cloud workloads is used with
machine learning for anomaly detection. This work proposes an iterative autoencoder method
for anomaly detection. Since detection of anomalies is not sufficient, we propose four different
classification models for identification of types of anomalies into different kinds of resource
bottlenecks. These include simple multiclass classifier, multiclass classifier with fractional differencing,
multiclass classifier using encoded representation, and multiclass classifier using triplet-loss

based representation.

To support continuous online learning of models used for identification of different types of
anomalies, this thesis proposes a novel approach for real time adaptation of anomaly identification
models. Here, we analyse two fundamental challenges associated with online adaptation of
anomaly identification based classification models. These challenges are associated with catastrophic
forgetting and architectural evolution in models. To avoid catastrophic forgetting, we propose
a combination of standard loss and distillation loss in a teacher-student network approach. For
architectural evolution, we propose three different alternatives for incremental architectural learning

and a column subset selection based teacher-student network.

Based on the analysis, we observe that leveraging the presence of long range dependence,
the proposed multivariate regression based prediction framework and the proposed online adaptation
of prediction models, have enhanced the accuracy of CPU usage prediction by 69% over other
existing methods for resource usage prediction. In the context of failure prediction, the proposed
iterative autoencoder method performs 35% better than existing methods for anomaly detection.
Among the proposed type of anomalies identification methods, LSTM-based multiclass classifier
using triplet-loss based representation improves the performance of identification of types of

anomalies by 66% which is further enhanced by proposed ensemble methods to a total of 76%.
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Effective resource provisioning has become a necessity rather than a luxury. It is important
that resource management decisions by schedulers and resource managers are carried based on
the expected resource usage workload as well as the current state of the servers. Based on this,
the work carried in this thesis achieves its primary goal to improve the performance of prediction
of future resource usage and diagnosis of resource contention failures. Insights and outcomes
from this thesis can be used by service administrators to achieve optimal resource management

and its far-reaching impact on revenue, reliability and reputation of service administrators.

Keywords: Cloud data centre, resource usage prediction, failure prediction, long range
dependence, neural networks, multivariate, online adaptation, sparse models, architectural evolution,

long short term memory models.
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