UNRAVELING THE POTENTIAL OF PRISTINE GRAPHENE AS A VALUABLE CATALYST SUPPORT MATERIAL FOR NANOPARTICLES.

A Thesis

submitted

by

Tripti Vats

(Roll No: D12052)

for the award of the degree of

Doctor of Philosophy

School of Basic Sciences

Indian Institute of Technology Mandi

Mandi, Himachal Pradesh-175005

March, 2018

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this Thesis is the result of investigations carried out by me in the **School of Basic Sciences**, Indian Institute of Technology Mandi, under the supervision of **Dr. Prem Felix Siril**, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place: IIT Mandi

Signature:

Date: 16/03/2018

Name: Tripti Vats

Declaration by the Research Advisor

I hereby certify that the entire work in this Thesis has been carried out by **Tripti Vats**, under my supervision in the **School of Basic Sciences**, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma.

Signature:

Name of the Guide: **Dr. Prem Felix Siril**

Date: 16/03/2018

Affectionately

Dedicated

To

My Parents, Almighty God

U

My loving family

न चोरहार्यं न च राजहार्यं न भ्रातृमाज्यं न च भारकारि। व्यये कृते वर्धत एव नित्यं विद्याधनं सर्वधनप्रधानम्॥

The Wealth that cannot be stolen, neither abducted by state, nor can be divided amongst brothers, neither it is burdensome to carry, the wealth that increases by giving.

That wealth is education and is supreme of all possessions.

Acknowledgements

While pursuing my PhD, many seen and unseen hands helped my way forward towards the goal by putting me on the right path and enlightening me with their knowledge and experience. I shall remain grateful to all of them. It's because of them that I toughly enjoyed this learning journey as a researcher.

Firstly, I would like to express my deepest gratitude and profound indebtedness to my PhD advisor Dr. Prem Felix Siril for his dexterous guidance, invaluable suggestions and perceptive enthusiasm which enabled me to accomplish the task of research study. He sets an example of a world-class researcher with his passion for research. His wide knowledge and methodical deduction have been of great value to me. His understanding, encouragement and guidance provided me a good basis for my present thesis.

I would like to express my gratitude and love for my family for all their support and sacrifices which enable me to be here. It was because of their constant support, belief and encouragement that helped me to overcome all my hurdles are and I emerge victorious. "Ma" without you this was not possible. I won't say thanks to you because I want to remember your efforts every single day for rest of my life. "Daddy" you are my first teacher. My motivation after holding your thesis for the first time in my hand compelled me to choose this path as my career. Thanks for always being there for me through my highs and lows. I feel blessed to be born as your daughter. Shantanu it's been said that behind every successful man there is a woman but in our case you are the reason behind my success. You are my support system and as always we will share sweet and bitter moments together. Thanks a lot for being part of my life and supporting through my journey as a scholar. My siblings (Deepti and Anubhav) you two are like sunshine in my life. Your cooperation, endless tolerance and constant encouragement makes me the person I am now. I would like to extend my heartiest gratitude for my in-laws (Smt Neelam Singh and Dr Suresh Prasad Singh, Sanghamitra, Shipra, Devika and Devina) for their understanding, support, love and guidance. I would also like to express my sincere thanks to The Director, IIT Mandi for his support and encouragement. The research facility at Advanced Materials Research Center (AMRC), IIT Mandi is also gratefully acknowledged hereby.

My sincere thanks to all chemistry faculty members for their invaluable advice and encouragement during course work as well as the research work.

I am also very much thankful to my research group members specially my seniors Sunil Dutt and Raj Kumar and mycollogues Mohit Chawla and Prateep Singh Sagra for creating a collaborative and productive environment in the lab. I would also like to convey my gratitude to my juniors in AMRC for their invaluable support and help during my research work.

I would like to thank all my friends Anna, Shubhanjali, Renu, Nidhi, Fariya, Indu and Neha for their continuous support, late night gossips and encouragement.

My earnest thanks to AMRC staff for their assistance in lab.

Above all, all the praise is due to the Almighty God, the ultimate source of knowledge, a part of which He reveals to man and peace be upon all his Messengers throughout the world for success and guidance of mankind. I express my gratitude and indebtedness to the Almighty for countless blessings.

Acknowledgements	i
Abbreviations	viii
Abstract	x
Chapter 1 Graphene an	d its nanocomposites synthesis: An Overview
1.1. Graphene: An Overv	/iew1
1.1.1. History	
1.1.2. Graphene Synt	thesis7
1.1.2.1. Top d	lown Methods
	1.1.2.1.1. Micromechanical Exfoliation8
	1.1.2.1.2. Ball Milling
	1.1.2.1.3. From Graphene Oxide10
	1.1.2.1.4. Liquid-Phase Exfoliation of Graphite12
1.1.2.2. Botto	m up Methods
	1.1.2.2.1. Chemical Vapour Deposition16
	1.1.2.2.2. Epitaxial Growth of Graphene17
1.1.3. Graphene Pro	perties17
1.1.3.1. Morr	bhology and Structure
1.1.3.2. Optic	cal Properties
1.1.3.3. Mech	nanical Properties
1.1.3.4. There	mal Conductivity

1.1.3.5. Chemical Structure and Reactivity
1.1.4. Graphene as a Catalyst Support
1.1.4.1. Comparison between RGO and G23
1.2. Synthesis of Pristine graphene /Metal or Metal Oxide Nanocomposites25
1.2.1. Surfactants and Their Self-Assembly25
1.2.1.1. Lyotropic Liquid Crystals (LLCs) or Mesophases27
1.2.1.2. Swollen Liquid Crystals (SLCs)
1.2.1.3. Stability of SLCs
1.2.1.4. Characterization of SLCs
1.2.1.5. Synthesis of Nanoparticles Using SLCs as Soft Templates
1.2.2. Hydrothermal Technique
References
Chapter 2 Graphene synthesis and characterization: Data set
Abstract
2.1. Introduction
2.2. Experimental section
2.2.1. Materials
2.2.2. Synthesis of Pristine Graphene
2.2.3. Synthesis of Graphene Oxide and Reduced Graphene Oxide
2.3. Results and discussion

2.3.1. Characterization of Pristine graphene	62
2.3.2. Finding out the yield of Pristine graphene	63
2.3.3. Characterization of synthesized Pristine graphene	65
2.4. Conclusions	70
References	70

Chapter 3 Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals

Abstract76
3.1. Introduction
3.2. Experimental section
3.2.1. Materials
3.2.2. Synthesis of nanocomposites
3.3. Results and discussion
3.3.1. Preparation and characterization of SLCs
3.3.2. Preparation and characterization of graphene/ Pd nanocomposite
3.3.3. Particle growth mechanism on graphene
3.4. Conclusions
References113
Chapter 4 High catalytic activities of palladium nanorods with pristine graphene as catalyst
support

Abstract	.121
.1. Introduction	121

4.2.1	Experimental	section
-------	--------------	---------

4.2.1. Materials	
4.2.2 Preparation of Palladium nanorods and graphene nanocomposites	
4.2.3. Catalytic Application in Carbon–Carbon Coupling Reactions	124
4.2.4. Characterization	125
4.3. Results and discussion	
4.3.1. Characterization SLCs	
4.3.2. Characterization of Pd nanocomposite	128
4.3.3. Catalytic performance in coupling reactions	135
4.4. Conclusions	143
References	144
Chapter 5 Pristine graphene/Iron Oxide nanocomposite: An efficient	bi-functional
electrocatalyst	
Abstract	151
•	
Abstract	
Abstract	151
5.1. Introduction5.2. Experimental section	151
Abstract	151
Abstract	151
Abstract	151
Abstract 5.1. Introduction 5.2. Experimental section 5.2.1. Materials 5.2.2. Methods 5.2.3. Characterization 5.2.4. Electrochemical measurements	

5.4. Conclusions171
References
Chapter 6 Pristine graphene - copper (II) oxide nano catalyst: A novel and green approach in CuAAC reactions
Abstract177
6.1. Introduction177
6.2. Experimental Section
6.2.1. Materials178
6.2.2. Preparation of CuO nanoparticles and the nanocomposites
6.2.3. General procedure for the synthesis
6.2.4. Charaterization
6.3. Results and discussion
6.3.1. Characterization of CuO nanoparticles and the nanocomposites
6.3.2. Catalytic Performance of CuO/Graphene nanocomposites
6.4. Conclusions
References
Chapter 7 Conclusions and future perspectives216
List of Publications

Abbreviations

AFM	Atomic force microscopy
CDCl ₃	Deuterated chloroform
СМС	Critical micelle concentration
CNTs	Carbon nanotubes
cryo-TEM	cryo-Transmission electron microscopy
СТАВ	Cetyltrimethyl ammonium bromide
CuAAC	Copper(I)catalyzed alkyne-azide cycloaddition
CuO _{nano}	Copper oxide nanoparticle
CV	Cyclic voltammetry
CVD	Chemical vapour deposition
DCM	Dichloromethane
EtOH	Ethanol
EDX or EDS	Energy dispersive X-ray spectroscopy
FE-SEM	Field emission-Scanning electron microscopy
FTIR	Fourier transform infrared spectroscopy
G	Pristine Graphene
G _{CuO}	Copper oxide/ Pristine graphene nanocomposites
GFe2O3	Iron oxide/Pristine graphene nanocomposites
GPd _{0.001M}	Palladium nanoparticles (0.001M)/Pristine Graphene
GPd _{0.01M}	Palladium nanoparticles (0.01M)/Pristine Graphene
GPr	Palladium nanorods/Pristine graphene
GO	Graphene oxide
HR-TEM	High resolution Transmission electron microscopy
ICP-MS	Inductively coupled plasma mass spectrometry
LCs	Liquid crystals
LLCs	Lyotropic liquid crystals
LPE	Liquid Phase exfoliation

NMP	N-methyl pyrrolidone
NaCl	Sodium chloride
NaBH4	Sodium borohydride
Nano _{Fe2O3}	iron oxide nanoparticles
OER	Oxygen evolution reaction
ORR	Oxygen reduction reaction
Pd	Palladium
Pd(DBA) ₂	Bis(dibenzylideneacetone)palladium(0)
Pd _{0.001M}	Pd nanoparticles
Pr	Palladium nanorods
Pt	Platinum
РОМ	Polarizing optical microscopy
RGO	Reduced graphene oxide
RGO _{CuO}	Copper oxide/Reduced graphene oxide nanocomposites
	Iron oxide/Reduced graphene oxide nanocomposites
RGO _{Fe2O3}	
RGO _{Fe2O3} RGOPd _{0.001M}	Iron oxide/Reduced graphene oxide nanocomposites
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED	Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanoparticles (0.001M)/Reduce graphene oxide
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED SAXS	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED SAXS SDS	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction Small-angle X-ray scattering
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED SAXS SDS SiC	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction Small-angle X-ray scattering Sodium dodecyl sulfate
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED SAXS SDS SiC SLCs	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction Small-angle X-ray scattering Sodium dodecyl sulfate Silicon Carbide
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED SAXS SDS SIC SLCs TEM	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction Small-angle X-ray scattering Sodium dodecyl sulfate Silicon Carbide Swollen liquid crystals
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED SAXS SDS SIC SLCs TEM TGA	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction Small-angle X-ray scattering Sodium dodecyl sulfate Sodium dodecyl sulfate Silicon Carbide Swollen liquid crystals Transmission electron microscopy
RGO _{Fe2O3} RGOPd _{0.001M} RGOPr SAED SAED SAXS SDS SIC SLCs TEM TGA UV	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction Small-angle X-ray scattering Sodium dodecyl sulfate Sodium dodecyl sulfate Silicon Carbide Swollen liquid crystals Transmission electron microscopy Thermogravimetric analysis
RGO _{Fe2O3}	Iron oxide/Reduced graphene oxide nanocomposites Palladium nanoparticles (0.001M)/Reduce graphene oxide Palladium nanorods/Reduced graphene oxide Selected area electron diffraction Small-angle X-ray scattering Sodium dodecyl sulfate Sodium dodecyl sulfate Silicon Carbide Swollen liquid crystals Transmission electron microscopy Thermogravimetric analysis Ultra violet

Abstract

Graphene is an allotrope of carbon, where 2-D arrangement of carbon atoms offers a plethora of amazing properties. Carbon atoms arrange themselves in sp² hybridized honeycomb structures where long-range of π -conjugated graphitic system yields extraordinary thermal, high theoretical surface area, amazing mechanical and electrical properties. These extraordinary properties make graphene a perfect support material for catalytically active nanoparticles. Infact, graphene in the form of reduced graphene oxide is widely used as a catalyst support. Reduced graphene oxide sheets, formed due to the reduction of graphene oxide contains marginal amount of residual oxygen that are bonded to carbon atoms in the sheets forcing them to be in sp³ hybridized state. Due to the presence of these sp³ sites the flow of charge carriers through sp² clusters get disrupted. The presence of such functional groups also decreases the π electron cloud and disturb the π - π interaction property of graphitic sheets with other electron rich molecules. However, the reduced graphene oxide is a popular choice as support material mainly due to its hydrophilicity, better interaction with metal or metal oxide nanoparticles through the functional groups and the familiar chemical method of synthesis. The primary postulate of the present thesis was that pristine graphene with minimal defect concentration and uniform distribution of π electrons throughout the 2-D sheets should make it a better catalyst support material. The studies that are embodied in the present thesis proved our postulate to be true.

The pristine graphene was synthesized using a sonication assisted liquid phase exfoliation is aqueous solution of surfactants. The method was initially optimized for obtaining maximum yield of exfoliated thin layer graphene without introducing significant amounts of defects. Two methods were developed to make nanocomposites of pristine graphene with metal or metal oxide nanoparticles. First approach was to use swollen liquid crystals (SLCs) as soft templates for the preparation of nanocomposites of pristine graphene. SLCs are a class of lyotropic liquid crystals that are usually formed from a mixture of water, oil, surfactant and co-surfactant. The aspects such as diameter of the micelles and the distance between them can be varied in SLCs and hence the name. It has been shown in the past that the SLCs can be used as versatile templates for the synthesis of a variety of noble metal nanostructures. In this thesis, SLCs were used as soft templates to synthesize spherical and rods shaped metal nanostructures that are preferentially attached to pristine graphene sheets. The nanocomposites were prepared by entrapping the pristine graphene in the SLCs along with a metal precursor which on exposure to hydrazine vapor yielded the nanocomposites. The present studies also proved that the nanocomposites of pristine graphene could be synthesized by using hydrothermal methods also. All the prepared nanomaterials were found to have better catalytic activities than the corresponding nanocomposites of RGO for various chemical and electrochemical reactions.

The present thesis entitled 'Unraveling the potential of pristine graphene as a valuable catalyst support material for nanoparticles" contains seven chapters. Chapter 1 includes a brief introduction about graphene, its properties, synthesis, effect as a support material and its applications. A discussion about the general aspects of the two methods that were used for making the nanocomposites of pristine graphene, i.e. SLC and hydrothermal has also been included in this chapter. The liquid phase exfoliation, optimization of different experimental parameters to obtain maximum yield of graphene and the detailed characterization of pristine graphene vis-à-vis RGO are detailed in Chapter 2. Chapter 3 describes an approach for the synthesis of pristine graphene of SLCs. Chapter 3 mainly focuses on the synthesis and the application of pristine

graphene/palladium nanocomposites, where small palladium nanospheres (approx. size 4 ± 1 nm) were preferentially got deposited over pristine graphene sheets. The pristine graphene-Pd nanocomposite showed very good catalytic activities in C-C coupling reactions and hydrogenation of nitrophenol. Chapter 4 conveys the ability of soft templates in controlling the morphology of palladium nanorods over the pristine graphene support. This chapter also includes the exploration of its activity in different C-C coupling reactions. In chapter 5, synthesis of pristine graphene/iron oxide nanocomposites using SLC template assisted method is discussed. The catalyst showed very high electro-catalytic activity as a bifunctional catalyst in water splitting reactions. Chapter 6 includes the synthesis and application in pristine graphene/copper oxide nanocomposites in copper catalysed azide-alkyne cycloaddtion reactions. The synthesis and application of this catalyst was performed in a green environment where we used water as a solvent and microwave for the temperature control during the reaction.

Chapter 7 presents the key findings of our research work and the future scope of the present work. Overall, the study clearly established that pristine graphene is a better catalyst support than RGO for the catalyst systems and applications that were studied. The nanocomposites of pristine graphene with Pd, iron oxide and CuO were not only having better activities, but exhibited very good stability and hence recyclability, thus proving the utility of pristine graphene as a better catalyst support material.