Development of New Non-chemically Amplified Resists for High-resolution Lithography Applications

A thesis

submitted by

P. GURU PRASAD REDDY

(D14010)

for the award of the degree of

DOCTOR OF PHILOSOPHY

SCHOOL OF BASIC SCIENCES

INDIAN INSTITUTE OF TECHNOLOGY MANDI

KAMAND-175005 (H.P.), INDIA

July, 2018

DEDICATED TO "ALL MY LOVED ONES" AND

MOTHERLAND "INDLA"

Declaration by the Research Scholar

This is to certify that the thesis entitled "Development of New Non-chemically Amplified Resists for High-resolution Lithography Applications", submitted by me to the Indian Institute of Technology, Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by me under the supervision of Dr. Pradeep C. Parameswaran. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

I.I.T Mandi (H.P)

Signature of the Research Scholar

Date:

P. Guru Prasad Reddy

Thesis Certificate

This is to certify that the thesis entitled "Development of New Non-chemically Amplified Resists for High-resolution Lithography Applications", submitted by Mr. P. Guru Prasad Reddy to the Indian Institute of Technology, Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

I.I.T Mandi (H.P)

Signature of the Thesis Advisor

Date:

Dr. Pradeep C. Parameswaran

Acknowledgements

I would like to express my deep sense of thanks and heartiest gratitude to my thesis advisor *Dr. Pradeep C. Parameswaran* for his continuous guidance, encouragement, suggestions, and love throughout the tenure of my Ph.D. This thesis would not have been possible without his inspiration and support. His punctuality, professionalism, leadership qualities and helping nature have always inspired me to do more and become like him. During difficult times, he was always there to push me towards success. It was agreat honor and wonderful experience for me to work with him.

I would like to thank *Prof. Kenneth E. Gonsalves* and his interdisciplinary team consisting of *Dr. Subrata Ghosh*, *Dr. Satinder Kumar Sharma* and *Dr. Pradeep C. Parameswaran* for indroducing me to the field of nano-lithography. Under their guidence, I could learn a lot about this emerging area and I am grateful to all of them for their generous contributions towards my research work.

I would like to acknowledge the following research projects which funded my Ph.D work during initial years:

- Development of Polyoxometalates-Organic hybrids having 'through-bond' electronic interactions between cluster and organic units for materials and catalytic applications' (DST Fast Track Project: No. SR/FT/CS-58/2011).
- Resists concepts for EUVL at the 16 nm node and beyond. (From INTEL/SEMATECH, United States of America).
- Next generation, cutting-edge indigenous EUVL resist technology for semiconductor industry. (From DST-TSDP, India)
- Novel non-chemically amplified molecular photoresists for nanoelectronics at the 20 nm node or beyond. (From DST-GITA, India)

I express my sincere thanks to the Doctoral Committee members *Dr. Venkata Krishnan*, *Dr. Abhimanew Dhir*, *Dr. Hari Varma* and *Dr. Mohammad Talha* for their valuable time, efforts and suggestions towards my thesis work. I would like to thank the Director, IIT Mandi (*Prof. Timothy A. Gonsalves*) for his support and motivation and also for providing us with the excellent research facilities at IIT Mandi through the Advanced Materials Research Center (AMRC). My sincere thanks are also due to all the Chemistry faculty members, especially, *Dr. Prem Felix Siril, Dr. Chayan K. Nandi, Dr. Aditi Halder and Dr. Rik Rani Koner* for their constant support throughout my Ph.D tenure.

I would like to thank my lab mates and friends at IIT Mandi for their encouragement and moral support which made my stay and studies more enjoyable. I would like to thank *Venky*, *Rambabu*, *Prateep*, *Nagaraju*, *Lingeswar Reddy*, *Yogesh*, *Ravi*, *Dr. Rajesh chebolu* and *Rajkumar* for being great friends and for their continuous help during my Ph.D. work. I would like to thank my brother *Dr. V. S. V. Satynarayana* for his continuous efforts to make me an independent researcher at the initial stages of my Ph.D.

Big thanks to all my colleagues and friends, particularly, *Manisha*, *Abhishek, Ashwani* (bana), Shilpa, Suman, Ranjit, Aranya, Pankaj, Sunil, Reena, Sougata, Bulti, Tripti, Suneel, Vipul, Navneet Chandra Verma, Syamantak, Harpreet, Lalitha, Trivender, Ashish, Gourab, Santu, Neha, Pawan, Moinuddin and Shivani for providing me a friendly work environment. I would like to thank Navneet Matharoo and Anjali for working with me as project students. My sincere thanks to all the AMRC staff, particularly, **Dushyant**, Sunil, Ishita, Pallavi, Puneet, Karam and Naresh for their excellent assistance in the lab.

I would like to thank the Council of Scientific and Industrial Research (CSIR), India for a Senior Research Fellowship (SRF) at the final stage of my Ph.D program.

Finally, a special word of thanks to my ever loving family members *Bhogi Reddy*, *Shakuntalamma, Jyothi and Venkateswara Reddy* for their continuous love, encouragement, motivation, patience, understanding and support throughout my life.

Table of Contents

Declaration	i-ii
Acknowledgements	iii-iv
Table of Contents	v-viii
Abbreviations	ix-xii
Abstract	xiii-xiv

Chapter 1: Introduction and Review of Literature

1.1 Microelectronics: An Overview	1
1.2 International Technology Roadmap for Semiconductors (ITRS)	2
1.3 Micro and Nano Lithography	4
1.3.1 Photolithography	4
1.3.2 Exposure Tools	5
(a) Extreme Ultraviolet Lithography (EUVL, $\lambda = 13.5$ nm)	7
(b) Electron Beam Lithography	8
(c) Ion or Focused Ion Beam Lithography	8
1.4 Figure of Merits for Patterned Resists	9
1.5 Photoresist Materials	11
1.5.1 Chemically Amplified Resists (CARs)	12
1.5.1.1 Limitations of CARs	15
1.5.2 Non-Chemically Amplified Photoresists (n-CARs)	16
1.5.2.1 Non-Chemically Amplified Organic Photoresists	16
1.5.2.2 Non-Chemically Amplified Inorganic Photoresist	21
1.5.2.3 Non-Chemically Amplified Organic-Inorganic Hybrid Photoresist	23
1.5.2.4 Non-Chemically Amplified Organometallic Photoresist	25
1.5.2.5 Non-Chemically Amplified Polyoxometalate based Photoresists	28
1.6 Objectives of the Thesis	30
1.7 References	32

Chapter 2: Polyarylenesulfonium Salt as a Novel and Versatile Non-chemically Amplified Negative-tone Photoresist for High Resolution EUV Lithography Applications

Abstract	38
2.1 Introduction	39
2.2 Results and Discussion	39
2.2.1 Synthesis and Characterization of PAS	39
2.2.2 UV-365 nm (I-line) Lithography Application	42
2.2.3 Extreme Ultraviolet Lithography Applications	45
2.3 Conclusions	51
2.4 Experimental Section	51
2.4.1 Materials and Methods	51
2.4.2 Synthesis of PAS	
2.4.2.1 Synthesis of Methyl-(4-methylthio)phenyl)phenylsulfonium	53
trifluoromethanesulfonate (1)	53
2.4.2.2 Synthesis of Methyl 4-(phenylthio)phenylsulfide (2)	53
2.4.2.3 Synthesis of Methyl 4-(phenylthio)phenylsulfoxide (3)	54
2.4.2.4 Synthesis of PAS	54
2.5 References	55

Chapter 3: Organic Microstructure Incorporated Sulfonium Triflate Polymer as Highly Sensitive Negative Tone Non-chemically Amplified Resist for EUV and E-beam Lithography Applications

Abstract	56
3.1 Introduction	57
3.2 Results and Discussion	58
3.2.1 Synthesis and Characterization	58
3.2.2 E-beam/EUV Lithography Studies	61
3.2.3 Nanomechanical Studies	66
3.3 Conclusions	67
3.4 Experimental Section	68
3.4.1 Materials and Methods	68
3.4.2 Synthesis of MAPDST-co-IPMA Copolymer	68
3.4.3 Thin Film Preparation and E-beam Lithography	69
3.4.4 Extreme Ultraviolet Lithography and Imaging Analysis	69
3.4.5 Nanomechanical Property Analyses	70
3.5 References	70

Chapter 4: Design, Development and EUVL Applications of a New HfO₂ Based Hybrid Non-Chemically Amplified Resist

Abstract	73
4.1 Introduction	75
4.2 Results and Discussion	77
4.2.1 Synthesis and Characterization	77
4.2.2 Extreme Ultraviolet Lithography Studies	82
	83
4.3 Conclusions	85
4.4 Experimental Section	86
	86
4.4.2 FT-IR, NMR, TGA, EDX and DLS Analyses	86
	86
4.4.4 Synthesis of HfO ₂ -acetate (HA)	87
4.4.5 Synthesis of HfO ₂ -methacrylate (HM)	87
	88
	88
4.4.8 EUV Exposure and FE-SEM Characterization	89
•	89
4.5 References	90

Chapter 5: Organic-Inorganic Hybrid Photoresists Containing Hexafluoroantimonate: Design, Synthesis and High Resolution EUV Lithography Applications

Abstract	93
5.1 Introduction	94
5.2 Results and Discussion	95
5.2.1 Synthesis and Characterization	95
5.2.2 EUV Lithography Studies	100
5.3 Conclusions	108
5.4 Experimental Section	108
5.4.1 Materials and Methods	108
5.4.2 Synthesis of MAPDSA	109
5.4.3 Synthesis of 1.5%-MAPDSA-MAPDST Copolymer	109
5.4.4 Synthesis of 2.15%-MAPDSA-MAPDST Copolymer	110
5.4.5 Thin Film Preparation, EUV Exposure and Development	110
5.5 References	111

Chapter 6: Heavy Metal Incorporated Helium Ion Beam Active Hybrid Non-chemically Amplified Resists: Nano-patterning With Low Line Edge Roughness

Abstract	113
6.1 Introduction	114
6.2 Results and Discussion	116
6.2.1 Helium Ion Beam Lithography Studies	116
6.3 Conclusions	122
6.4 Experimental Section	123
6.4.1Materials	123
6.4.2 Thin Film Preparation and He-ion Beam Studies	123
6.4.3 Helium Ion Microscope (HIM) and AFM Characterization Details	124
6.5 References	124

Chapter 7: Ferrocene Bearing Non-ionic Poly-aryl Tosylates: Synthesis, Characterization and Electron Beam Lithography Applications

Abstract	127
7.1 Introduction	128
7.2 Results and Discussion	130
7.2.1 Synthesis and Characterization	130
7.2.2 Lithography Studies	136
7.3 Conclusions	144
7.4 Experimental Section	145
7.4.1 Chemicals and Reagents	145
7.4.2 Instrumentation Details	145
7.4.3 Synthesis of Poly(TPMA)	146
7.4.4 Synthesis of 2.0%-Poly(FEMA-co-TPMA)	146
7.4.5 Synthesis of 4.0%-Poly(FEMA-co-TPMA)	147
7.5 References	148

Chapter 8: Conclusions151
