Alternate High-κ Dielectrics for Next-Generation CMOS Logic and Memory Technology

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Robin Khosla (Roll No. D13011)

Supervisor Dr. Satinder Kumar Sharma

SCHOOL OF COMPUTING & ELECTRICAL ENGINEERING (SCEE) INDIAN INSTITUTE OF TECHNOLOGY (IIT)-MANDI, MANDI, (HIMACHAL PRADESH), INDIA

September, 2017

Alternate High-κ Dielectrics for Next-Generation CMOS Logic and Memory Technology

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Robin Khosla (Roll No. D13011)

Supervisor Dr. Satinder Kumar Sharma

SCHOOL OF COMPUTING & ELECTRICAL ENGINEERING (SCEE) INDIAN INSTITUTE OF TECHNOLOGY (IIT) – MANDI, MANDI (HIMACHAL PRADESH), INDIA

September, 2017

Dedicated to My Beloved and Respected Parents

O Dhananjaya, in a devotional mood, give up attachment to the fruits of karma, perform your prescribed duties and become equipoised in success and failure. Such equanimity is called yoga.

A person who is faithful, who has conquered his senses and who is devoted to the practice of niskama karma yoga attains transcendental knowledge. After attaining transcendental knowledge, he quickly attains the supreme peace.

> ---SRIMAD BHAGWAT GITA (Chapter 2, Sloka 48) (Chapter 4, Sloka 39)

I hereby declare that the entire work embodied in this thesis entitled "Alternate High-κ Dielectrics for Next-Generation CMOS Logic and Memory Technology" is the result of investigations carried out by me in the School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT)-Mandi, Mandi (H.P), India, under the supervision of Dr. Satinder Kumar Sharma, Associate Professor, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT)-Mandi, Mandi (H.P), India.

I also declare that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgments have been made wherever the work described, based on the findings of other investigators. Any omissions that might have occurred due to oversight or error in judgment are regretted.

Place: IIT Mandi

Date:

Signature:

Name:

Robin Khosla Roll no. - D13011 School of Computing & Electrical Engineering Indian Institute of Technology (IIT)-Mandi, MANDI-175005 (Himachal Pradesh), India

It is certified that the thesis work entitled "Alternate High-κ Dielectrics for Next-Generation CMOS Logic and Memory Technology" is an original research work done by Mr. Robin Khosla, in the School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) - Mandi, Mandi (H.P), India, under my supervision and guidance for the degree of Doctor of Philosophy in the School of Computing and Electrical Engineering (SCEE), Indian Institute of Institute of Technology (IIT) - Mandi, Mandi (H.P), India, under my supervision and guidance for the degree of Doctor of Philosophy in the School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) - Mandi, Mandi (H.P), India.

To the best of my knowledge and belief, present thesis completed by Mr. Robin Khosla, fulfils the requirements of the Ph.D. ordinance of the Indian Institute of Technology (IIT) - Mandi, Mandi (H.P), India. It contains the original work of candidate himself, and no part of it has been submitted elsewhere for any degree or diploma.

Signature:

Name of the Guide:

Dr. Satinder Kumar Sharma

(Associate Professor) School of Computing and Electrical Engineering Indian Institute of Technology (IIT)-Mandi MANDI-175005 (Himachal Pradesh), India

Date:

Acknowledgements

The creation of a project requires the combine sincere efforts, hard work, talents, and blessings of great people, who directly or indirectly contribute to thesis-report. This thesis is no exception, and I owe special gratitude to several individuals.

Primarily, I like to thank God Almighty for providing me the patience and determination to complete the research work and put forth this thesis. I am very thankful to my family for providing me the confidence, support, and blessings to finish my Ph.D. thesis successfully.

I deem it as a proud privilege to express my sincerest regards and gratitude to Dr. Satinder Kumar Sharma, Associate Professor, Indian Institute of Technology (IIT)-Mandi, Mandi (H.P.) who is the thesis Supervisor, for the valuable support he gave me on many occasions and for many interesting discussions on many topics, ideas, experiments and theories related to this research. Without his invaluable suggestions, I would not have been able to complete this research work. His knowledge in both academics and industry is an invaluable source of guidance for the presented work.

I tremendously thank, Professor Ashutosh Sharma, for allowing me to use the nanofabrication facilities at Thematic Unit of Excellence, Department of Chemical Engineering, IIT Kanpur; Professor Jörg Schulze, Director Institute of Semiconductor Electronics (IHT), University of Stuttgart, Stuttgart, Germany for the use of samples preparation facility; Indian Nanoelectronics Users Program (INUP), IISc, Bengaluru, for providing me the opportunity to use the state-of-the-art clean room facilities for fabrication of devices; and Indian Institute of Technology (IIT)-Mandi, Mandi (H.P.) for providing the material and device characterization facilities.

Next, I acknowledge the Director, DC members and faculties, Prof. Timothy Gonsalves, Dr. Anil Kumar Sao, Dr. Samar Agnihotri, Dr. Chandra Shekhar Yadav, Dr. Tanmoy Maiti, Dr. Hitesh Shrimali, Dr. Ajay Soni and Dr. Ankush Bag for their valuable guidance and sharing their experience with me from time to time and also for their help and cooperation.

Further, I would like to thank my research partners and friends Dr. Pawan Kumar, Mr. Deepak Kumar Sharma, Mr. Mahesh Soni, Mr. Tarun Arora, Ms. Shivani Sharma, Mr. Erlend Rolseth, Mr. Arjun, Dr. Senthil Srinivasan, Dr. Kunal Mondal, and Dr. Richa Soni for collaborative research and discussions at various stages of research. Moreover, I thank the facility technologists Mr. Suresh Addepalli and Ms. Smitha Nair at CeNSE, IISC, Bangalore for helping me with device fabrication facilities and discussions.

i

Finally, I am thankful to all whosoever have contributed in this thesis work.

Thank you.

Robin Khosla IIT Mandi, India .

Abstract

Incessant scaling of electronic devices in integrated circuits (ICs), since 50 years in accordance with celebrated Moore's Law has revolutionized the semiconductor industry and become an integral part of our day to day life. It has been dictating the exponential growth of chip complexity with decreasing device feature size, and concurrent improvements in circuit speed, memory capacity, and cost per bit. Currently, it is commonly cited that transistors scaling is approaching nano-metric regime and hitting with many fundamental device physics and technology roadblocks. To maintain the higher performance and functionality of scaled logic and memory devices at lower power consumption and affordable costs as required for next generation technology node, the dielectric materials have decreased in thickness from hundreds of nano-meters (nm) to atomistic boundaries. This gives rise to a number of fundamental device physics concerns such as increase in leakage current, power dissipation, channel mobility degradation, decrease in reliability and lifetime for logic and memories devices, as well as process challenges that include integration and optimization of new materials in current semiconductor processing.

Moreover, these issues are not only about the inability of the scaled device performance and reliable operation but also the constraints from the material scientists, economist and technologist point of view. Thus, numerous attempts are being made to introduce new alternate dielectric materials and device structure, especially for logic and memory applications, so that the transistor scaling is not hampered in near future. High- κ dielectrics have emerged as a promising solution for next generation logic and memory applications. Therefore, in this work, the performance, reliability and lifetime of alternate high- κ dielectric materials are methodically investigated by non-destructive, nanoscopic and microscopic techniques for CMOS logic, embedded read only memory and ferroelectric non-volatile memory applications.

For logic devices, erbium oxide (Er_2O_3) shows reasonable dielectric constant, lower leakage current density, higher conduction band offset and Gibbs free energy in contact with silicon, therefore has attracted wide attention of the scientific community. Thus, Er_2O_3 MOS capacitors are fabricated with variation in post-deposition annealing treatment and characterized with various physical, optical and electrical techniques. It reveals that the post deposition furnace annealing (FA) treatment is suitable to obtain high-quality high- κ erbium oxide thin films on active silicon with negligible interfacial oxide formation, low leakage current density, and insignificant hysteresis as desired for CMOS logic applications. The charge trapping and decay analysis of erbium oxide ultrathin films on silicon are systematically investigated by nanoscopic Kelvin probe force microscopy (KPFM) technique and Er₂O₃ MOS capacitors by microscopic capacitance-voltage (C-V) technique. A simple method is proposed and investigated for trap density estimation using nanoscopic KPFM technique and compared with the conventional macroscopic C-V measurements based trap density estimation method.

Moreover, the continuing advancement in semiconductor technology increasingly requires a significant amount of reliable embedded memory to be integrated with other logic devices circuitry, to take the benefit of on-chip interconnects, higher data rate and also the realization of high-performance futuristic system on chip (SOC) technology. For on-chip embedded memories, bilayer gate stacks have the potential to continue scaling of flash memories to sub-20 nm nodes for short-term by reducing the gate stack thickness and minimize the fundamental cross-coupling capacitance issues among adjacent cells, but the charge trapping mechanism is not well understood and also not well-established, till date. For embedded memories, Al₂O₃ has attracted wide attention because of moderate dielectric constant, high band gap, low-leakage current, high thermal & kinetic stability, few bulk electrically active defects and availability of high-quality thin films formation with atomic layer deposition (ALD) processing. Since SiO₂ layer has the minimum defects, and excellent interface with Si, so direct investigation of charge trapping in high-quality Al₂O₃ or Al₂O₃/SiO₂ interface can be investigated, especially for embedded memory applications. Thus, Al/Al₂O₃/SiO₂/Si, MAOS capacitors are fabricated by atomic layer deposition (ALD) and plasma enhanced chemical vapour deposition (PECVD) based Al₂O₃ and SiO₂ thin films, respectively. The fabricated MAOS devices showed high memory window, low leakage current density and high breakdown field that proved the fabricated MAOS structures suitable for on-chip multi-level read only memory applications. The charge trapping properties i.e. trap centroid, trap density and lifetime of bi-layer Al₂O₃/SiO₂ gate stack on Si are investigated by nanoscopic KPFM technique and MAOS capacitors by microscopic techniques. Further, the trap density is estimated systematically by the proposed technique using KPFM at room temperature and compared to the conventional constant current stress based trap density estimation method. Thus, because of high memory window at high voltage the Al/Al₂O₃/SiO₂/Si, MAOS system is suitable for high voltage electrically erasable read only type embedded memory applications for bios/code storage.

In the near future to meet the increasing demand of memory density, as a long-term solution, an alternate, and reliable storage mechanism is required, i.e. non-charge storage based emerging memories, because further scaling of charge stored based memories is hampered by the fewer number of stored electrons that lead to threshold voltage instability due to statistical fluctuations. In this regard, for storage class memories, high-k based metal-ferroelectric-insulatorsemiconductor (MFIS) structure of ferroelectric memories is a prospective contender due to its fast access time, low power consumption, radiation tolerance, non-destructive readout, excellent retention, and endurance time. Among the ferroelectric materials, PbZrTiO₃ (PZT) showed high dielectric constant, high remanent polarization, low crystallization temperature and good thermal stability. Also, the titanium oxynitride (TiO_xN_y) has shown exceptional physical and chemical properties, such as high dielectric constant, higher resistance to interfacial oxide formation, and an excellent diffusion barrier. Thus, TiO_xN_y buffer layer is expected as an exceptional candidate for non-volatile ferroelectric memory applications. Therefore, Au/PZT/TiO_xN_v/Si, MFIS capacitors are fabricated using TiOxNy buffer and PZT ferroelectric thin films on p-Si by RFmagnetron sputtering and annealed in N2 ambient. The material characteristics of deposited thin films are investigated by XRD, Micro Raman and AFM analysis that revealed the desired TiO_xN_y rutile, PZT perovskite phases, and high-quality uniform multi-layer interfaces, respectively. Further, the electrical characteristics of Au/PZT/TiO_xN_y/Si, MFIS structures revealed the large memory window, low leakage current, high breakdown strength and exceptional data retention. Moreover, the fabricated devices showed good memory characteristics when subjected to thermal and constant voltage stress that proved the reliability of TiOxNy buffer layer for ferroelectric field effect transistor applications.

List of Figures

Figure 1.1 - Evolution of IC technology over the years and expected futuristic technology
projections [3]–[9]
Figure 1.2 - (a) Modern computer memory hierarchy, and (b) Expected future memory hierarchy
Figure 1.3 - Evolution of memory technology (a) RAM, (b) PROM, (c) SRAM, (d) DRAM, (e)
EPROM, (f) NOR-FLASH, (g) NAND-FLASH, (h) 3D-XPoint (PCM) Memory, and (i) Price
per MB comparison of commercial memories [11], [12]4
Figure 1.4 - International Technology Roadmap for Semiconductors (ITRS), requirement of
dielectric constant for alternate gate oxide material for high-performance CMOS logic technology [31]
Figure 1.5 - International Technology Roadmap for Semiconductors (ITRS) scaling prediction
with gate stack thickness and technology node for (a) NAND Flash and (b) NOR Flash. "FG"
and "CT" represents Floating Gate and Charge trapping [31]9
Figure 1.6 - International Technology Roadmap for Semiconductors (ITRS) scaling guidelines
for commercial memory technologies i.e. DRAM, NAND-Flash and 1T-1C FRAM [31]11
Figure 1.7 - Classification of emerging non-volatile random access memory devices
Figure 1.8 - Simulated hysteresis loop for the ferroelectric material with variation in maximum
applied electric fields (E _m) [67]. The inset shows how the center atom displaces in ferroelectric
perovskites on the application of electric field13
Figure 2.1 - The structure of metal-oxide-semiconductor-field-effect-transistor (MOSFET) 20
Figure 2.2 - Alternative High-κ oxides available in periodic table [2]24
Figure 2.3 - Band gap and Dielectric constant of various alternate gate oxides [29], [116]25
Figure 2.4 - Problems with high-κ oxides [2]26
Figure 2.5 - The structure of Charge Trapping Flash Memory Capacitor (a) Conventional tri-
layer gate stack, and (b) Engineered bi-layer gate stack
Figure 2.6 - Gate Stack thickness and Memory window of current reported works [64], [75]-
[86], [89]–[95], [102], [151], [188] .
Figure 3.1 - (a) The structure of MOS Capacitor, and (b) Ideal C-V characteristics of MOS
Capacitor
Figure 3.2 - MOS Capacitor at Flat-Band condition (a) Structure at $V_g=V_{fb}$ and (b) corresponding
energy band diagram43

Figure 3.3 - (a) MOS Capacitor biased at surface accumulation where '+' represents holes and
'-' represents electrons and (b) its corresponding energy band diagram44
Figure 3.4 - (a) MOS Capacitor biased in depletion region where '+' represents holes and '-'
represents electrons and (b) its corresponding energy band diagram
Figure 3.5 - (a) MOS Capacitor biased in inversion region where '+' represents holes and '-'
represents electrons and (b) its corresponding energy band diagram
Figure 3.6 - (a) MOS structure and (b) C-V measurement by combination of A.C. and D.C.
voltage47
Figure 3.7 - (a) The structure of MAOS embedded memory capacitor, and (b) its C-V
characteristics
Figure 3.8 - (a) MFIS structure of FeFET, and (b) operation in OFF and ON State50
Figure 3.9 - Basic mechanism of sputtering
Figure 3.10 - DC Sputtering
Figure 3.11 - RF Sputtering
Figure 3.12 - Magnetron Sputtering
Figure 3.13 - Schematic diagram for high-k dielectric deposition setup using Chemical Vapor
Deposition System, (a) perpendicular flow and (b) Horizontal Flow configuration
Figure 3.14 - Basic Gas Flow sequence for CVD and ALD chambers during thin film deposition
process
Figure 3.15 – Atomic Force Microscope (AFM) general components and their functions59
Figure 3.16 - Schematic of Oxide/Si structure and KPFM analysis method. (a) Charge injection
in contact mode and (b) CPD measurement in non-contact (Lift) mode61
Figure 3.17 – Schematic of Ellipsometer System
Figure 3.18 – Energy distribution of scattered light [195]66
Figure 3.19 - Schematic of basic Raman Spectroscopy System
Figure 3.20 – Schematic of a typical X-ray Diffraction system
Figure 3.21 - Schematic of a transmission electron microscope
Figure 3.22 - Process flow for TEM crossectional sample preparation70
Figure 4.1 - Process flow to fabricate Er ₂ O ₃ based MOS Capacitors
Figure 4.2 - Schematic of Er ₂ O ₃ /Si structure and KPFM analysis method (a) Charge injection in
contact mode and (b) CPD measurement with a lift height of 100 nm78

Figure 4.3 - HRTEM Cross-section images of the Er ₂ O ₃ /Si interface after (a) Furnace and (b)
Rapid thermal annealing treatment79
Figure 4.4 - XRD pattern of (a) Furnace and (b) Rapid thermal post deposition annealing treated
Er ₂ O ₃ ultrathin films on Silicon80
Figure 4.5 - (a) 2D, (b) 3D AFM micrograph of furnace annealed, and (c) 2D, (d) 3D AFM
micrograph of rapid thermal annealed Er ₂ O ₃ ultrathin films on Si substrate
Figure 4.6 - The KPFM surface potential (CPD) images of FA treated Er ₂ O ₃ ultrathin film for
trapped electrons A(a)-A(j), trapped holes A(k)-A(t) and for RTA treated Er ₂ O ₃ ultrathin film for
trapped electrons B(a)-B(j), trapped holes B(k)-B(t) measured after decay time of 8 min, 24 min,
40 min, 56 min, 72 min, 88 min, 104 min, 120 min, 136 min, and 152 min, respectively
Figure 4.7 - CPD line profile for (a) electrons trapping, (b) holes trapping in FA based PDA
treated Er ₂ O ₃ /Si and CPD line profile for (c) electrons trapping, (d) holes trapping in RTA based
PDA treated Er ₂ O ₃ /Si system
Figure 4.8 - The contact potential difference (CPD) value plot with and without grounded tip
scan for (a) negative bias, (b) positive bias for RTA treated Er ₂ O ₃ /Si systems and (c) negative
bias, (d) positive bias for FA treated Er ₂ O ₃ /Si systems
bias, (d) positive bias for FA treated Er ₂ O ₃ /Si systems
bias, (d) positive bias for FA treated Er ₂ O ₃ /Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems
bias, (d) positive bias for FA treated Er ₂ O ₃ /Si systems
bias, (d) positive bias for FA treated Er ₂ O ₃ /Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems
bias, (d) positive bias for FA treated Er_2O_3 /Si systems
bias, (d) positive bias for FA treated Er_2O_3/Si systems

Figure 4.14 - The total trap charge density (N_t) – time plot, estimated using the proposed method
of equation (4.8), for post deposition RTA and FA treated erbium oxide in Er ₂ O ₃ /Si, structure.
Figure 4.15 - Normalized capacitance v/s gate voltage characteristics for post-deposition RTA
and FA treated Pt/Er ₂ O ₃ /Si, MOS capacitors
Figure 4.16 - Normalized cyclic C-V characteristics of Pt/Er ₂ O ₃ (RTA)/Si and Pt/Er ₂ O ₃ (FA)/Si,
MOS Capacitors at 100 kHz. The inset shows the hysteresis, extracted by subtracting the
capacitance value obtained from forward and reverse gate voltage sweeps for Pt/Er_2O_3 (RTA)/Si
and Pt/Er ₂ O ₃ (FA)/Si, MOS Capacitors at 100 kHz96
Figure 4.17 - The conductance (G) - gate voltage (V) characteristics for RTA and FA
Pt/Er ₂ O ₃ /Si, MOS Capacitors
Figure 4.18 - Current density (J) - gate voltage (V) characteristics for RTA and FA Pt/Er ₂ O ₃ /Si,
MOS Capacitors
Figure 4.19 - (a) Leakage current density vs. EOT for various high- κ oxides, for HfO ₂ , ZrO ₂ ,
Al ₂ O ₃ and La ₂ O ₃ [29]
Figure 4.20 - Relation of log (J) vs. log (V) for positive applied voltage range from 0 to 3 V
characteristics for RTA and FA Pt/Er ₂ O ₃ /Si, MOS structure100
Figure 4.21 - Distribution of carriers in Er ₂ O ₃ dielectric, [a] Ohm's law, [b] Trap-Filled-Limited
(TFL) curve, and [c] SCLC conduction
Figure 4.22 - Comparison of simulated and measured (experimental) C-V characteristics of
Pt/Er2O3(FA)/Si/Pt, MOS Capacitors at 100 KHz104
Figure 5.1 - Process flow to fabricate Al/Al ₂ O ₃ /SiO ₂ /Si, MAOS structure109
Figure 5.2 - Schematic of Al ₂ O ₃ /SiO ₂ /Si structure and KPFM analysis method (a) Charge
injection in contact mode and (b) CPD measurement with a lift height of 100 nm111
Figure 5.3 - The KPFM surface potential (CPD) images of Al ₂ O ₃ (13.68nm) /SiO ₂ /Si /Al,
structure for trapped holes A(a)-A(j), trapped electrons A(k)-A(t) and for $Al_2O_3(48.80nm) / SiO_2$
/Si /Al, structure for trapped holes B(a)-B(j), trapped electrons B(k)-B(t) measured after decay
time of 8 min, 24 min, 40 min, 56 min, 72 min, 88 min, 104 min, 120 min, 136 min, and 152
min, respectively
Figure 5.4 - Measured CPD line profiles of (a) hole trapping and (b) electron trapping in
Al ₂ O ₃ /SiO ₂ /Si, system. The bright and dark regions in inset images show the trapped holes and

electrons, for MAOS system with variation in alumina thickness of 13.68 nm (c), (e) and 48.80
nm (d), (f), respectively
Figure 5.5 - The variation of CPD values with aging after charge (holes or electrons) injection,
for MAOS system with variation in alumina thickness of 13.68 nm and 48.80 nm, respectively.
The inset shows the KPFM images of injected charges (holes or electrons) scanned after 8 min
and 152 min for MAOS system with variation in alumina thickness of 13.68 nm and 48.80 nm
signifying vertical leakage is the dominant mechanism for charge leakage rather than lateral
charge spreading116
Figure 5.6 - The total trap charge density (σt) – time plot, extracted from the CPD values with
the assumption of extreme charge distribution boundary conditions. Here, the inset shows the
magnified view of trap density to signify the exponential decay in charge density with time for
both boundary conditions
Figure 5.7 - Effect of lift height on CPD value for the Al ₂ O ₃ /SiO ₂ /Si system after Hole injection
at 3 V
Figure 5.8 - The proposed simple trap density estimation method for oxide/semiconductor
systems119
Figure 5.9 - The total trap charge density (N_t) – time plot, estimated using the proposed method
of equation (5.4), for MAOS system with variation in alumina thickness of 13.68 nm and 48.80
nm
Figure 5.10 - C-V characteristics of Al / Al ₂ O ₃ (13.68 nm) / SiO ₂ (6.15 nm) / Si, MAOS structure
at different sweeping voltages and 1 MHz frequency. Inset shows the variation of memory
window with sweep voltage for Al / Al ₂ O ₃ (13.68 nm) / SiO ₂ (6.15 nm) / Si, MAOS devices.
Figure 5.11 - Normalized C-V characteristics of Al / Al_2O_3 (13.68 nm) / SiO_2 (6.15 nm) / Si,
MAOS structure with variation in frequency
Figure 5.12 - Current density-Voltage (J-V) characteristics of Al / Al ₂ O ₃ (13.68 nm) / SiO ₂ (6.15
nm) / Si, MAOS structures pre-breakdown and post-breakdown. The inset shows the J-V
characteristics post-breakdown for MAOS capacitors from -15 to +15V gate voltage
Figure 5.13 - Charge trapping characteristics of Al/Al ₂ O ₃ /SiO ₂ /Si, MAOS Capacitors under the
constant current stress of 1 μ A/cm ² with variation in Al ₂ O ₃ thickness

Figure 5.14 - Schematic showing the estimated charge trap centroid in Al/Al_2O_3 (13.68 nm)/SiO ₂
(6.15 nm)/Si, MAOS structure
Figure 5.15 - Measured Retention Characteristics of Al / Al ₂ O ₃ (13.68 nm) / SiO ₂ (6.15 nm) / Si,
MAOS Capacitors. The inset shows the retention time of $\sim 10^5$ sec on extrapolation129
Figure 5.16 - Comparison of simulated and measured (experimental) C-V characteristics of
Al/Al ₂ O ₃ /SiO ₂ /Si, MAOS Capacitors at 1 MHz
Figure 6.1 - Process flow to fabricate MFIS structure of FeRAM
Figure 6.2 - XRD pattern of post-deposition annealed TiO_xN_y and PZT thin films138
Figure 6.3 - Raman Spectra of post-deposition annealed TiO_xN_y and PZT thin films138
Figure 6.4 - 2D and 3D AFM Surface micrographs of post-deposition annealed TiO_xN_y (a and
b) and PZT thin films (c and d), respectively140
Figure 6.5 - Normalized cyclic C–V characteristics of Au/PZT (20 nm)/TiO _x N _y (6 nm)/Si, MFIS
Capacitors with variation in sweep voltage measured at 1 MHz frequency141
Figure 6.6 - Normalized cyclic C-V characteristics of Au/PZT (20 nm)/TiO _x N _y (6 nm)/Si,
(MFIS) Capacitors (a) at different frequency, and (b) at different sweep rate142
Figure 6.7 - Normalized cyclic C-V characteristics of Au/PZT/TiO _x N _y /Si, (MFIS) Capacitors at
various stress voltages
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiO _x N _y
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors at different stress voltages
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors at different stress voltages
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors at different stress voltages
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiOxNy(6nm)/Si, MFIS Capacitors at different stress voltages.145Figure 6.9 - Leakage current density-Voltage (J-V) characteristics for breakdown analysis ofAu/PZT (20nm)/TiOxNy (6nm)/Si, MFIS Capacitors.146Figure 6.10 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si,
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiOxNy(6nm)/Si, MFIS Capacitors at different stress voltages.145Figure 6.9 - Leakage current density-Voltage (J-V) characteristics for breakdown analysis ofAu/PZT (20nm)/TiOxNy (6nm)/Si, MFIS Capacitors.146Figure 6.10 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si,MFIS Capacitors at room temperature (R.T.) and 100 °C extrapolated on a log scale, and the inset
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors at different stress voltages
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiOxNy(6nm)/Si, MFIS Capacitors at different stress voltages.145Figure 6.9 - Leakage current density-Voltage (J-V) characteristics for breakdown analysis ofAu/PZT (20nm)/TiOxNy (6nm)/Si, MFIS Capacitors.146Figure 6.10 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si,MFIS Capacitors at room temperature (R.T.) and 100 °C extrapolated on a log scale, and the insetshows the measured C-T characteristics.148Figure 6.11 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si,
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors at different stress voltages.145Figure 6.9 - Leakage current density-Voltage (J-V) characteristics for breakdown analysis ofAu/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors.146Figure 6.10 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiO _x N _y (6 nm)/ Si,MFIS Capacitors at room temperature (R.T.) and 100 °C extrapolated on a log scale, and the insetshows the measured C-T characteristics.148Figure 6.11 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiO _x N _y (6 nm)/ Si,MFIS Capacitors at different stress voltages.149
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors at different stress voltages145Figure 6.9 - Leakage current density-Voltage (J-V) characteristics for breakdown analysis ofAu/PZT (20nm)/TiO _x N _y (6nm)/Si, MFIS Capacitors146Figure 6.10 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiO _x N _y (6 nm)/ Si,MFIS Capacitors at room temperature (R.T.) and 100 °C extrapolated on a log scale, and the insetshows the measured C-T characteristics148Figure 6.11 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiO _x N _y (6 nm)/ Si,MFIS Capacitors at different stress voltages149Figure 6.12 - Energy band diagram for Au/PZT/TiO _x N _y /Si, MFIS Capacitors under CVS with
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiOxNy (6nm)/Si, MFIS Capacitors at different stress voltages.145Figure 6.9 - Leakage current density-Voltage (J-V) characteristics for breakdown analysis of Au/PZT (20nm)/TiOxNy (6nm)/Si, MFIS Capacitors.146Figure 6.10 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si, MFIS Capacitors at room temperature (R.T.) and 100 °C extrapolated on a log scale, and the inset shows the measured C-T characteristics.148Figure 6.11 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si, MFIS Capacitors at different stress voltages.149Figure 6.11 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si, MFIS Capacitors at different stress voltages.149Figure 6.12 - Energy band diagram for Au/PZT/TiOxNy/Si, MFIS Capacitors under CVS with (a) $-V_g +$ Stress (b) $+V_g +$ Stress.150
Figure 6.8 - Leakage current density-Voltage (J-V) characteristics of Au/PZT (20nm)/TiOxNy (6nm)/Si, MFIS Capacitors at different stress voltages.145Figure 6.9 - Leakage current density-Voltage (J-V) characteristics for breakdown analysis of Au/PZT (20nm)/TiOxNy (6nm)/Si, MFIS Capacitors.146Figure 6.10 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/Si, MFIS Capacitors at room temperature (R.T.) and 100 °C extrapolated on a log scale, and the inset shows the measured C-T characteristics.148Figure 6.11 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si, MFIS Capacitors at different stress voltages.149Figure 6.11 - Capacitance-Time (C-T) characteristics of Au/PZT (20 nm)/ TiOxNy (6 nm)/ Si, MFIS Capacitors at different stress voltages.149Figure 6.12 - Energy band diagram for Au/PZT/TiOxNy/Si, MFIS Capacitors under CVS with (a) $-V_g +$ Stress (b) $+V_g +$ Stress.150Figure 6.13 - Simulated hysteresis loop for the ferroelectric material with variation in maximum

List of tables

Table 2.1 - Scaling rules for MOSFET's 20
Table 2.2 - High Performance Logic Technology requirements
Table 2.3 - Comparison of Dielectric constant, Band gap, Band offset and Gibbs free energy of
major alternate high-κ dielectrics [32], [37]26
Table 2.4 - Comparison of Ferroelectric properties of potential organic and inorganic thin films.
Table 4.1 - Summary of Processing Parameters for post-deposition RTA and FA treated
Pt/Er ₂ O ₃ /Si, MOS Capacitors
Table 5.1 - Comparison with state-of-the-art bilayer gate stack capacitors for non-volatile
memory applications
Table 6.1 - Summary of Processing Parameters for Au/PZT/TiON/Si, MFIS Capacitors 136
Table 6.2 - Important parameters for calculation of theoretical memory window and comparison
with experimental memory window152
Table 6.3 - Comparison with state-of the-art MFIS capacitors investigated for Ferroelectric Field
Effect Transistors

Abbreviations

SYMBOL	MEANING
1T	One Transistor
1T-1C	One Transistor - One Capacitor
AFM	Atomic Force Microscopy
Α	Area of top gate contact
CMOS	Complementary Metal Oxide Semiconductor
C-F	Capacitance-Frequency
C-V	Capacitance-Voltage
C-T	Capacitance-Time
CVS	Constant Voltage Stress
DRAM	Dynamic Random Access Memory
DRO	Destructive Read Out
ε	Permittivity of free space
EEPROM	Electrically Erasable Programmable Read Only Memory
FeFET	Ferroelectric Field Effect Transistor
FeRAM/FRAM	Ferroelectric Random Access Memory
ITRS	International Technology Roadmap for Semiconductors
J-V	Current Density - Voltage
Κ / ε r	Dielectric Constant of Insulator/Oxide
KPFM	Kelvin Probe Force Microscopy
MFIS	Metal Ferroelectric Insulator Semiconductor
MFS	Metal Ferroelectric Semiconductor
MIS	Metal Insulator Semiconductor

MISM	Metal Insulator Semiconductor Metal
MOS	Metal Oxide Semiconductor
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
$MW / \Delta W$	Memory Window
NDRO	Non-Destructive Read Out
PZT	Lead Zirconate Titanate
RAM	Random Access Memory
ROM	Read Only Memory
SRAM	Static Random Access Memory
SBT	Strontium Bismuth Tantalate
XRD	X-Ray Diffraction

Acknowledgements	i
Abstract	iii
List of Figures	vii
List of tables	xiii
Abbreviations	XV
Table of Contents	xvii
Chapter 1 Introduction	1
1.1 Introduction	1
1.2 Evolution of Logic and Memory Technology	2
1.3 Scaling of Emerging Logic Technology	5
1.4 Scaling of Emerging Embedded Flash Memory Technology	8
1.5 Scaling Trend of Next Generation Ferroelectric Memory Technology	10
1.5.1 Evolution of Ferroelectric Materials for FeFET	12
1.5.2 Alternate Buffer/Insulator Materials for FeFET Applications	15
1.6 Scope and Motivation	16
1.7 Contribution of the thesis	16
1.8 Organization of the thesis	17
Chapter 2 Alternate High-к Dielectric Materials for Logic and Memory Technology.	19
2.1 Introduction	19
2.2 Scaling of MOSFET Technology	19
2.3 High-κ gate dielectrics for CMOS Logic technology	23
2.4 High-κ dielectrics based bilayer gate stacks for embedded memories	28
2.5 High-κ dielectrics based gate stack for FeFET's	32
2.5.1 Ferroelectric Materials	33
2.5.2 Alternate Buffer/Insulator material for FeFET	38
Chapter 3 Device Fabrication and Characterization Techniques	41
3.1 Introduction	41
3.2 Electrical characterization techniques	42
3.2.1 The MOS Capacitor	42
3.2.2 MOS Capacitor Electrical Measurements	46

Table of Contents

3.2.3 MAOS Capacitors for Embedded Memories	48
3.2.4 MFIS Capacitors for FeFET's	49
3.3 Thin Film Deposition Techniques	51
3.3.1 Physical Vapor Deposition (PVD)	51
3.3.2 Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD)	55
3.4 Material Characterizations	58
3.4.1 Scanning Probe based Characterizations	58
3.4.2 Optical Characterizations	63
3.4.3 Physical Characterizations	67
Chapter 4 Erbium Oxide (Er2O3) based MOS/MIS Structure for CMOS Logic	
Technology: Sample Preparation and Characterizations	73
4.1 Introduction	73
4.2 Sample Preparation and Characterizations	75
4.3 Results and Discussions	79
4.3.1 Material Characteristics	79
4.3.2 Electrical Characteristics of MOS/MIS Structures	94
4.4 Summary	104
Chapter 5 Aluminium Oxide (Al ₂ O ₃) based MAOS Structure for Embedded Memo	ry
Technology: Sample Preparation and Characterizations	107
5.1 Introduction	108
5.2 Experimental	109
5.3 Results and Discussions	112
5.3.1 Surface Characteristics	112
5.3.2 Electrical Characteristics	121
5.4 Summary	131
Chapter 6 Titanium Oxynitride (TiOxNy) buffer layer for MFIS Structure of Ferro	electric
Memories: Device Fabrication and Characterizations	133
6.1 Introduction	133

.

6.2 Sample Preparation and Characterizations	
6.3 Results and Discussions	
6.3.1 Material Characteristics	
6.3.2 Electrical Characteristics	
6.4 Summary	154
Chapter 7 Conclusions and Future Scope	
7.1 Conclusions	
7.2 Future Scope	
References	
List of Publications	