The Dark Side of Alzheimer's Disease and Amyloid Formation by Signal Peptide of Amyloid Precursor Protein

A Thesis Submitted

by

Kundlik Bhagwan Gadhave

(Roll No: D16070)

for the award of the degree of

Doctor of Philosophy

School of Basic Sciences Indian Institute of Technology Mandi Mandi, Himachal Pradesh-175005 January, 2020

Affectionately Dedicated to my Famíly, Fríends, Teachers, Indian Farmers and Soldiers

INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI- 175 005 (H.P.), INDIA www. iitmandi.ac.in

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this Thesis entitled "The Dark Side of Alzheimer's Disease and Amyloid Formation by Signal Peptide of Amyloid Precursor Protein" is the result of investigations carried out by me in the *School of Basic Sciences*, Indian Institute of Technology Mandi, under the supervision of *Dr. Rajanish Giri*, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgments have been made wherever the work described is based on finding of other investigators.

IIT Mandi (H.P.) Date: Indian Institute of Technology Signature:

Kundlik Bhagwan Gadhave

INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI- 175 005 (H.P.), INDIA

www.iitmandi.ac.in

Declaration by the Research Advisor

I hereby certify that the entire work in this Thesis has been carried out by *Kundlik Bhagwan Gadhave*, under my supervision in the *School of Basic Sciences*, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

IIT Mandi (H.P.) D<mark>at</mark>e: Signature: **Dr. Rajanish Giri**

Acknowledgement

The completion of any project depends upon the co-operation, co-ordination and combined efforts of several resources of knowledge, inspiration and energy. Therefore, I take this opportunity to express my appreciation to all the individuals who are directly or indirectly involved in the successful completion of my work.

Foremost I would like to express my thanks to the almighty "LORD SHIVA" for his blessings in accomplishment of the work. All the success in my task can only come from him.

I take this opportunity to express my sincere respect and profound gratitude to my guide, Dr. Rajanish Giri. The fruitfulness of the present work was mainly due to his valuable guidance, astute judgment, constructive criticism, for his overwhelming interest without which the work would not have been possible.

I am also grateful to the members of my thesis committee, Dr. Shyam K. Masakapalli, Dr. Venkata Krishnan, Dr. Syed Abbas, and Dr. Arpan Gupta, for their insightful comments and suggestions. In addition, I was very fortunate to enjoy a very fruitful and stimulating collaboration with Prof. Vladimir N. Uversky, Dr. Timir Tripathi, and Dr. Jay kant Yadav. I am highly grateful to Department of Biotechnology (DBT), India for providing financial support during the tenure and IIT Mandi for providing a nice working environment to finish the work efficiently.

Thanks to my labmates, past and present, who have been integral both to my education and to my mental health throughout: Deepak, Nitin, Ankur, Udit, Prateek, Taniya, Shivani, Meenakshi, and Bhuvaneshwari. I would also like to thank senior lab members Dr. Bhaskar and Dr. Amit Sharma for their scientific discussions and suggestions during work.

I must also thank my friends Ashutosh, Mondal da, Tanmoy da, Ankita, Swati, Namya, Yogesh, Abhinav, Deepanshu, and my roomie Pankaj who spent enjoyable moments during my PhD journey.

Last in the list but first in my mind I would also like to thank my Parents and Family for being my endless source of inspiration, strength, and confidence and in one word everything.

Abstract

Alzheimer's disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, the structural and unstructural biology of its signalling proteins are not understood completely. It is known that two major proteins related to AD pathology, A β peptide, and microtubule-associated protein tau, belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in numerous cellular processes, for example signaling, regulation of cell cycle, macromolecular recognition, and promiscuous binding. Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with AD signaling pathways may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets.

As an essential step in that direction, we have studied the intrinsic disorder profile of proteins from two different important signaling pathways such as amyloid cascade signaling and the ubiquitin-proteasome system (UPS) which are strongly associated with AD pathogenesis. We found an abundance of intrinsic disorder, short linear motifs (SLiMs), and molecular recognition features (MoRFs) in signalling proteins of these pathways. These regions have important roles in protein-protein interaction and may have a link with AD pathogenesis.

Further, we experimentally studied the MoRF region of amyloid precursor protein (APP) and ultimately focused on its signal peptide (APP₁₋₁₇ SP) and found that it is intrinsically disordered. Evidently, AD is the protein aggregation disease and aggregation behavior of the domains of APP other than A β has also been studied extensively. Nonetheless, APP₁₋₁₇ SP has not been studied for its conformation, aggregation and cytotoxic behavior. Therefore, we studied the amyloid formation of disordered APP₁₋₁₇ SP at the physiological condition. Overall, our study provides significant information on the intrinsic disorder profile of proteins from the amyloid cascade signaling and the UPS and reports that APP₁₋₁₇ SP can self-assemble into β sheet rich cytotoxic amyloid-like aggregates. These findings represent an important foundation and provide new insights to untangle the molecular mechanisms that underlie the pathophysiology of AD.

Contents

Title page	i
Declaration by the research Scholar	v
Declaration by the research Advisor	vii
Acknowledgement	ix
Abstract	xi
Contents	xiii
List of abbreviations	xvii
List of figures	xxi
List of tables	xxii

Chapter 1: Introduction and review of literature

1.1. Introduction	2
1.2. Molecular signaling pathways in AD 1.2.1 Amyloid cascade signaling in AD	4 6
1.2.2 Tau and NFTs in AD	8
1.2.3 Genetic mutations in AD	9
1.2.4 Altered neurotransmitter signaling in AD	11
1.2.5 Mitochondrial dysfunction in AD	13
1.2.6 Endoplasmic reticulum stress in AD	14
1.2.7 Oxidative stress-related signaling in AD	15
1.2.8 Neuroinflammatory signaling in AD	16
1.2.9 Ubiquitin-dependent proteasomal system in AD	17
1.2.10 Autophagy and endosomal-lysosomal system in AD	18
1.2.11 Protein misfolding and molecular chaperones in AD	19
1.2.12 Insulin signaling in AD	21
1.2.13 Altered lipid/cholesterol metabolism in AD	23
1.2.14 Calcium signaling in AD	24
1.2.15 Excitotoxicity in AD	25
1.2.16 Aberrant neurotrophic factor signaling in AD	26
1.2.17 Alterations in Wnt/β-catenin signaling in AD	27
1.2.18 Leptin signaling and AD	28

1.2.19 Blood-brain barrier (BBB) and cerebrovascular dysfunction in AD	30
1.2.20 Gut microbiota and nutrients in AD	31
1.3. Unanswered Questions1.4. Current advances and therapeutic strategies against AD	32 34
1.5. Conclusion	35
Chapter 2: Dark Proteome of the Amyloid Cascade Signaling Pathway	
Abstract	
2.1. Introduction	54
2.2. Materials and methods	58
2.2.1 Identification of proteins associated with amyloid cascade pathway	58
2.2.2 Evaluation of Intrinsic disorder propensity	60
2.2.3 Using a combined CH – CDF analysis approach to predict disorder	60
2.2.4 Identification of Molecular recognition features (MoRFs)	
2.2.5 Generation of protein-protein interaction network	61
2.2.6 Identification of Motifs	61
2.2.7 Mapping of IDPRs and MoRFs on available structures	61
2.3. Results and discussion	61
2.3.1 Global analysis of the disorder predisposition	61
2.3.2 Intrinsic disorder propensity of APP	72
2.3.3 Intrinsic disorder propensity of protein ADAM17	75
2.3.4 Intrinsic disorder propensity of protein BACE1	78
2.3.5 Intrinsic disorder propensity of the proteins of the Y-secretase comp	olex 82
2.3.5.1 Presenilin 1 (PSEN1)	83
2.3.5.2 Presenilin 2 (PSEN2)	86
2.3.5.3 Nicastrin	88
2.3.5.4 Y-Secretase subunits APH1	90
2.3.5.5 Y-Secretase subunit PEN2	91
2.3.6 Intrinsic disorder propensity of protein APOE	93
2.3.7 Intrinsic disorder propensity of the proteins of BIN1	96
2.3.8 Intrinsic disorder propensity of clusterin	99
2.3.9 Intrinsic disorder propensity of protein PICALM	101
2.3.10 Intrinsic disorder propensity of protein CD33	103
2.3.11 Intrinsic disorder propensity of protein SORL1	105

2.3.12 Intrinsic disorder propensity of protein PLG	107
2.3.13 Intrinsic disorder propensity in other proteins	109
2.4. Conclusion	54

Chapter 3: Unstructured Biology of Proteins from the Ubiquitin-Proteasome System

Abstract

3.1. Introduction	118
3.2. Materials and methods	122
3.2.1 Retrieval of sequences and structures	122
3.2.2 Identification of IDPRs	122
3.2.3 MoRFs prediction	123
3.2.4 Protein-protein interaction using STRING	123
3.2.5 Representation of IDPs and MoRFs	123
3.3. Results and discussion	123
3.3.1 Intrinsic disorder in the proteins of ubiquitin proteasomal system	125
3.3.2 Ubiquitin-like modifier-activating enzyme 1 (UBA1)	130
3.3.3 Ubiquitin-conjugating enzyme (E2 enzyme)	132
3.3.4 Ubiquitin ligase (E3 ubiquitin ligase)	133
3.3.5 Polyubiquitin-B (UBB)	134
3.3.6 Ubiquilin 1	137
3.3.7 Ubiquilin 2	140
3.3.8 Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1)	141
3.3.9 Ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5)	143
3.3.10 Ubiquitin-specific-processing protease 7 (USP7)	143
3.3.11 Ubiquitin-specific-processing protease 14 (USP14)	146
3.3.12 Ataxin-3	147
3.3.13 Proteasomal ubiquitin receptor (ADRM1)	150
3.3.14 26S proteasome non-ATPase regulatory subunit 2 (PSMD2)	152
3.3.15 26S proteasome non-ATPase regulatory subunit 4 (PSMD4)	152
3.3.16 26S proteasome non-ATPase regulatory subunit 14 (PSMD14)	153
3.4. Conclusion	155

Chapter 4: Amyloid Formation by Signal Peptide of Amyloid Precursor Protein Abstract

4.1. Introduction	164
4.2. Materials and method	166
4.2.1 Materials	166
4.2.2 Preparation of APP1-17 SP Aggregates	166
4.2.3 Thioflavin T Dye Binding Assay and Kinetics	166
4.2.4 Congo Red Spectral Shift Assay	167
4.2.5 Bis-ANS Fluorescence Assay	167
4.2.6 Circular Dichroism (CD) spectroscopy	167
4.2.7 Field Emission-Scanning Electron microscopy (FE-SEM)	168
4.2.8 High-Resolution Transmission Electron Microscopy (HR-TEM)	168
4.2.9 Atomic Force Microscopy (AFM)	168
4.2.10 Cell Viability (MTT reduction) assay	169
4.2.11 Hemolysis Assay	169
4.3. Results and discussion	
4.3.1 APP1-17 SP Shows Intrinsic Aggregation Propensity at Physiology	ogical
Condition	170
4.3.2 APP1-17 SP Aggregates Bind the Fibril-Specific Dyes ThT, Bis-	ANS,
and CR	171
4.3.3 APP1-17 SP Shows Nucleation-Dependent Amyloid Formation	171
4.3.4 APP1-17 SP Aggregation is Accompanied by an Increase in β -	Sheet
Structure	173
4.3.5 APP1-17 SP Aggregates Exhibit Specific Amyloid Morphology in	
Electron Microscopy	175
4.3.6 APP1-17 SP Aggregates are Cytotoxic to SH-SY5Y Neuroblastoma	
and RBCs	175
4.4. Conclusion	179
Chapter 5: Conclusions and future perspectives	
5.1. Significance and main contributions of the thesis	183
5.2. Future perspectives	185
List of publications	187