# Magnetic, Thermodynamic and Electrical Transport Properties of Ce-based Intermetallics: Ce<sub>1x</sub>La<sub>x</sub>Ge (x = 0.0-0.76), Ce<sub>1x</sub>Y<sub>x</sub>NiGe<sub>2</sub> (x = 0.0-0.4) and CeAlGe

A Thesis

submitted by

### Karan Singh (Roll No D14021)

for the award of the degree

of

**Doctor of Philosophy** 



School of Basic Sciences

Indian Institute of Technology Mandi

Kamand, Himachal Pradesh-175005, India

August, 2019



# **Declaration by the Scholar**

I hereby declare that the entire work embodied in this Thesis is the result of investigations carried out by me in the *School of Basic Sciences*, Indian Institute of Technology Mandi, India, under the supervision of *Dr. Kaustav Mukherjee*, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place:

Signature

Date:

Name: Karan Singh

# **Declaration by the Research Advisor**

I hereby certify that the entire work in this Thesis has been carried out by **Karan Singh** under my supervision in *School of Basic Sciences*, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma.

Signature: Name of the Guide: Dr. Kaustav Mukherjee Date:

Dedicated to my dear parents and my family

## Acknowledgement

First of all, I would like to thank God Almighty for giving me the blessings for the accomplishment of my research work.

I feel the honour to express my sincere gratitude and warm regards to my advisor Dr. Kaustav Mukherjee for his encouragement, valuable guidance and help during the course of this dissertation. Under his guidance, I successfully passed many difficulties and learned a lot. I appreciate all the contributions of time, ideas and funding to make my PhD experience productive and stimulant. He always knew how to see the obstacles while taking me to the right source, principle and perspective

I am grateful to Prof. T. A. Gonsalves, Director, IIT Mandi, for his support and help during my tenure at the institute. I thank my thesis doctoral committee members, Dr. Chandra Shekhar Yadav, Dr. Ajay Soni, Dr. Suman Kalyan Pal and Dr. Viswanath Balakrishnan. Their valuable advices, constructive criticisms and extensive discussions were a great help to my work. I am also thankful to the office staffs Ms. Stuti, Ms. Sushma, Mr. Kuldeep, Mr. Monu, Mr. Prakash, Mr. Manoj, Mr. Suneel, Mr. Pawan, Mr. Anoop, Mr. Prateek and Mr. Sushil Kumar Pal for their support.

I sincerely acknowledge, Indian Institute of Technology (IIT), Mandi, for offering me the PhD fellowship which gave me support financially during the course of my research. I also acknowledge experimental facilities of Advanced Material Research Centre (AMRC), IIT Mandi.

I gratefully acknowledge my lab seniors, Dr. Mohit K Sharma, Dr. Somnath Acharya, Dr. Mandeep K Hooda and Mr. Surender Lal Sharma for providing me valuable pointers on various aspects of vision research. I want to extend my gratitude to the following wonderful labmates for their active co-operation and helping me at various critical junctures during my research - Juhi Pandey, Niraj Singh, Kavita Yadav, Shailja Sharma, Sheetal Maun, Gurpreet Kaur, Sonu Chillar, Sonika and Kewal.

I am tempted to individually thank all my friends for spending memorable moments with whom I started my doctoral work. I will forever relish the company of Ankit, Adil, Yogender, Krishan, Birender, Rohit, Antik, and Shastri for the hilarious environment due to their association and moral support. I warmly thank Savin and K.S. Srikanth for their contest. Finally, I would like to thank my beloved family members for their unconditional love and support during my good and bad times. Without their consistent moral support, it was impossible to complete the research work.

# Contents

| Chapter 1: Introduction                                      | 1  |
|--------------------------------------------------------------|----|
| 1.1 Strongly correlated electron systems: Some basic aspects | 2  |
| 1.2 Ce-based intermetallics                                  | 3  |
| 1.3 Ruderman-Kittel-Kasuya-Yosida interaction                | 4  |
| 1.4 Kondo effect                                             | 5  |
| 1.5 Heavy Fermions                                           | 6  |
| 1.6 Fermi liquid behavior                                    | 7  |
| 1.7 Non-Fermi liquid behavior and quantum critical phenomena | 8  |
| 1.8 Topological properties                                   | 10 |
| 1.9 Aim of the present work                                  | 10 |
| 1.10 Overview of the thesis                                  | 12 |
| References                                                   | 15 |
|                                                              |    |

### Chapter 2: Preparation and characterization of compounds under investigation 19 2.1 Arc melting technique 20 2.2 Structural characterization using powder x-ray diffraction 20 2.3 Compounds under investigation 22 2.3.1 $Ce_{1-x}La_xGe$ (x = 0.0, 0.4 and 0.76) 22 2.3.2 $Ce_{1-x}Y_xNiGe_2$ (x = 0.0, 0.1, 0.2 and 0.4) 24 2.3.3 CeAlGe 25 2.4 Experimental methods 26 2.5 Summary 29 References 30

# Chapter 3: New order parameter driven by multipolar moment andFermi surface evolution in CeGe313.1 Introduction323.2 Multipolar moments: DC and AC susceptibility and DC non-linear susceptibility333.3 Change in Fermi surface associated with gap opening: Heat capacity, resistivity and<br/>magnetoresistance study38

| 3.4 Arrott plots: Analysis of order parameter through two-order-parameter                      | er model of   |
|------------------------------------------------------------------------------------------------|---------------|
| Landau free energy theory                                                                      | 42            |
| 3.5 Magnetic field-Temperature phase diagram                                                   | 44            |
| 3.6 Summary                                                                                    | 46            |
| References                                                                                     | 47            |
| Chapter 4: Interplay between disorder driven non-Fer                                           | mi liquid     |
| behavior and magnetism in Ce <sub>0.24</sub> La <sub>0.76</sub> Ge compound                    | 51            |
| 4.1 Introduction                                                                               | 52            |
| 4.2 DC and AC susceptibility                                                                   | 53            |
| 4.3 Evidence of non-Fermi liquid in Ce <sub>0.24</sub> La <sub>0.76</sub> Ge: Heat Capacity ar | nd electrical |
| resistivity study                                                                              | 55            |
| 4.4 Non-Fermi liquid scaling                                                                   | 57            |
| 4.5 Summary                                                                                    | 62            |
| References                                                                                     | 63            |
| Chapter 5: Partial gap opening and Ce-site dilution effect in                                  | n a heavy     |
| fermion compound CeNiGe <sub>2</sub>                                                           | 67            |
| 5.1 Introduction                                                                               | 68            |
| 5.2 Partial gap opening associated with spin density wave: DC susceptibility a                 | and Arrott    |
| plots study                                                                                    | 69            |
| 5.3 DC non-linear susceptibility and electrical resistivity                                    | 73            |
| 5.4 Heat capacity                                                                              | 76            |
| 5.5 Magnetic Gruneisen parameter                                                               | 77            |
| 5.6 Summary                                                                                    | 80            |
| References                                                                                     | 81            |
| Chapter 6: Field induced new magnetic state and partially                                      | frustrated    |
| moments in CeNiGe <sub>2</sub>                                                                 | 85            |

| 6.1 Introduction                                                     | 86 |
|----------------------------------------------------------------------|----|
| 6.2 DC susceptibility                                                | 87 |
| 6.3 Field induced a new magnetic state: Heat capacity study          | 87 |
| 6.4 Partially frustrated moments: Magnetic Gruneisen parameter study | 90 |
| 6.5 Electrical transport                                             | 93 |

| 6.6 Summary                                                                           | 95       |
|---------------------------------------------------------------------------------------|----------|
| References                                                                            | 96       |
| Chapter 7: Field induced anomalous quantum critical                                   | ity in   |
| Ce <sub>0.6</sub> Y <sub>0.4</sub> NiGe <sub>2</sub> compound                         | 99       |
| 7.1 Introduction                                                                      | 100      |
| 7.2 DC susceptibility and thermodynamic quantity $(-dM/dT)$                           | 101      |
| 7.3 Quantum criticality in $Ce_{0.6}Y_{0.4}NiGe_2$ : Heat capacity and $-dM/dT$ study | 102      |
| 7.4 $H/T$ scaling                                                                     | 105      |
| 7.5 Summary                                                                           | 109      |
| References                                                                            | 110      |
| Chapter 8: Spin-lattice relaxation phenomena in the magnetic sta                      | nte of a |
| semimetal CeAlGe                                                                      | 113      |
| 8.1 Introduction                                                                      | 114      |
| 8.2. DC susceptibility                                                                | 115      |
| 8.3 Spin lattice relaxation phenomena: AC susceptibility study                        | 117      |
| 8.4 Rashba-Dresselhaus spin-orbit effect: Resistivity and magnetoresistance           |          |
| study                                                                                 | 121      |
| 8.5 Heat capacity                                                                     | 124      |
| 8.6 Summary                                                                           | 126      |
| References                                                                            | 127      |
| Chapter 9: Summary and future work                                                    | 131      |
| 9.1 Summary                                                                           | 132      |
| 9.2. Future work                                                                      | 133      |
|                                                                                       |          |

# APPENDIX

| Spin-phonon coupling and o                          | exchange | interaction | in | Gd | substituted |
|-----------------------------------------------------|----------|-------------|----|----|-------------|
| YFe <sub>0.5</sub> Cr <sub>0.5</sub> O <sub>3</sub> |          |             |    |    | 135         |
| 1. Introduction                                     |          |             |    |    | 136         |
| 2. Experimental details                             |          |             |    |    | 137         |
| 3. Magnetization                                    |          |             |    |    | 138         |

| 4. Spin-phonon coupling: Raman Study | 141 |
|--------------------------------------|-----|
| 5. Summary                           | 147 |
| References                           | 148 |

# List of Publications