A novel evaporation assisted solvent antisolvent interaction

method for the nanocrystalization of organic compounds

A Thesis

submitted

by

Raj Kumar

(Roll No: D11019)

for the award of the degree of

Doctor of Philosophy

Schoolof Basic Sciences Indian Instituteof Technology Mandi Mandi, Himachal Pradesh-175005 July, 2016

Affectionately

Dedicated

To

Almighty God

My Parents

Му

Loving Family

Declaration by the Research Scholar

This is to certify that the thesis entitled **"A novel evaporation assisted solvent antisolvent interaction method for the nanocrystalization of organic compounds"**, submitted by me to the Indian Institute of Technology Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by me under the supervision of Dr. Prem Felix Siril. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

I.I.T. Mandi (H.P.) Date: Signature of Research Scholar Raj Kumar

Indian

Mandi

Thesis Certificate

This is to certify that the thesis entitled "A novel evaporation assisted solvent antisolvent interaction method for the nanocrystallization of organic compounds", submitted by Mr. Raj Kumar to the Indian Institute of Technology Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

I.I.T. Mandi (H.P.) Date: Research Guide
Dr. Prem Felix Siril

Indian

land

Indian Institute of Technology Mandi, V.P.O. Kamand, Tehsil Sadar, Near Kataula, Parashar Road, Mandi, Himachal Pradesh 175005. Telephone No.01905-237927, Fax: 01905-237942, Email: prem@iitmandi.ac.in

Acknowledgements

While pursuing my PhD degree, many seen and unseen hands pushed me forward, soul put me on the right path and enlightened me with their knowledge and experience. I shall remain grateful to all of them. I enjoyed this learning journey as a researcher.

First of all, I would like to express my deep gratitude and profound indebtedness to my PhD advisor Dr. Prem Felix Siril for his dexterous guidance, invaluable suggestions and perceptive enthusiasm which enabled me to accomplish the task of undertaking the present study. He sets an example of a world-class researcher for his passion on research. His wide knowledge and logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance provided me a good basis for the present thesis.

I express my sincere thanks to The Director, IIT Mandi for his support and encouragement. The research facilities at Advanced Materials Research Center (AMRC), IIT Mandi are also gratefully acknowledged hereby.

My sincere thanks to all chemistry faculty members for their invaluable advice and encouragement during course work as well as research work.

I am also very much thankful to my research group members for their invaluable support and help during my research work.

I would like to thank all my friends for their continuous support and encouragement.

My earnest thanks are due to AMRC staff for their assistance in lab.

A special word of thanks to my parents and all family members for their continuous inspiration, motivation and cooperation.

i

I would like to thanks to my wife, son and in-law's for their continuous support, motivation and cooperation.

Above all, praises are due to the Almighty God, the ultimate source of knowledge, a part of which he reveals to man and may peace be upon all his Messengers throughout the world for success and guidance of mankind. I express my gratitude and indebtedness to the Almighty for countless blessings.

Table of Contents

Acknowledgements	i
Abbreviations	x
Abstract	xv

Chapter 1 Introduction

1.1. Introduction 1 1.1.1. Implication of nanosizing on high energetic materials 2 1.1.2. Why do we need to nanoformulate pharmaceutical drugs? 2 1.2. Biopharmaceutical classification of drugs 5 1.3. Nanoformulation techniques 7 1.3.1. Top-down methods 9 1.3.1.1. Milling 9 1.3.1.2. High-pressure homogenization 11 1.3.2. Bottom-up methods 13 1.3.2.1. Supercritical fluid (SCF) methods 14 1.3.2.1.1. Rapid expansion of supercritical solvent (RESS) 17 1.3.2.1.2. Rapid expansion of supercritical solvent with solid cosolvent (RESS-SC) process 17 1.3.2.1.3. Supercritical antisolvent (SAS) and Gas antisolvent (GAS) processes 18 1.3.2.1.4. Particles from gas-saturated solution/suspension (PGSS) process 20	Abstra	ct		1
1.1.2. Why do we need to nanoformulate pharmaceutical drugs?	1.1.	Introdu	uction	1
1.2. Biopharmaceutical classification of drugs. .5 1.3. Nanoformulation techniques. .7 1.3.1. Top-down methods. .9 1.3.1. Top-down methods. .9 1.3.1.1. Milling. .9 1.3.1.2. High-pressure homogenization. .11 1.3.2. Bottom-up methods. .13 1.3.2.1. Supercritical fluid (SCF) methods. .14 1.3.2.1.1. Rapid expansion of supercritical solvent (RESS). .15 1.3.2.1.2. Rapid expansion of supercritical solvent with solid co-solvent (RESS-SC) process. .17 1.3.2.1.3. Supercritical antisolvent (SAS) and Gas antisolvent (GAS) processes. .18 1.3.2.1.4. Particles from gas-saturated solution/suspension (PGSS)		1.1.1.	Implication of	nanosizing on high energetic materials2
1.3. Nanoformulation techniques 7 1.3.1. Top-down methods 9 1.3.1.1. Milling 9 1.3.1.2. High-pressure homogenization 11 1.3.2. Bottom-up methods 13 1.3.2.1. Supercritical fluid (SCF) methods 14 1.3.2.1.1. Rapid expansion of supercritical solvent (RESS) 15 1.3.2.1.2. Rapid expansion of supercritical solvent with solid cosolvent (RESS-SC) process 17 1.3.2.1.3. Supercritical antisolvent (SAS) and Gas antisolvent (GAS) processes 18 1.3.2.1.4. Particles from gas-saturated solution/suspension (PGSS) 13		1.1.2.	Why do we no	eed to nanoformulate pharmaceutical drugs?2
1.3.1. Top-down methods.	1.2.	Biopha	armaceutical cl	assification of drugs5
1.3.1.1. Milling	1.3.	Nanof	ormulation tech	nniques7
1.3.1.2. High-pressure homogenization. 11 1.3.2. Bottom-up methods. 13 1.3.2.1. Supercritical fluid (SCF) methods. 14 1.3.2.1.1. Rapid expansion of supercritical solvent (RESS). 15 1.3.2.1.2. Rapid expansion of supercritical solvent with solid co-solvent (RESS-SC) process. 17 1.3.2.1.3. Supercritical antisolvent (SAS) and Gas antisolvent (GAS) processes. 18 1.3.2.1.4. Particles from gas-saturated solution/suspension (PGSS)		1.3.1.	Top-down me	thods9
1.3.2. Bottom-up methods. 13 1.3.2.1. Supercritical fluid (SCF) methods. 14 1.3.2.1.1. Rapid expansion of supercritical solvent (RESS). 15 1.3.2.1.2. Rapid expansion of supercritical solvent with solid co-solvent (RESS-SC) process. 17 1.3.2.1.3. Supercritical antisolvent (SAS) and Gas antisolvent (GAS) processes. 18 1.3.2.1.4. Particles from gas-saturated solution/suspension (PGSS)			1.3.1.1.	Milling9
1.3.2.1. Supercritical fluid (SCF) methods			1.3.1.2.	High-pressure homogenization11
1.3.2.1.1.Rapid expansion of supercritical solvent (RESS)		1.3.2.	Bottom-up me	ethods13
1.3.2.1.2.Rapid expansion of supercritical solvent with solid co- solvent (RESS-SC) process			1.3.2.1.	Supercritical fluid (SCF) methods14
solvent (RESS-SC) process			1.3.2.1	.1. Rapid expansion of supercritical solvent (RESS)15
1.3.2.1.3.Supercritical antisolvent (SAS) and Gas antisolvent (GAS)processes			1.3.2.1	.2. Rapid expansion of supercritical solvent with solid co-
processes			solven	t (RESS-SC) process17
1.3.2.1.4.Particles from gas-saturated solution/suspension (PGSS)				
			1	
F				.4. Particles from gas-saturated solution/suspension (PGSS) s20

1.3.2.2.	Antisol	vent assisted reprecipitation methods2	21
1.3.2.	2.1.	Simple reprecipitation method2	2
1.3.2.	2.2.	Sonoprecipitation method	24
1.3.2.	2.3.	Inverse reprecipitation methods	25
References			26

Chapter 2 Synthesis and characterization of nano high energetic materials through evaporation assisted solvent antisolvent interaction method

Abstra	t3	8
2.1.	Introduction	39
2.2.	Materials and methods	
	2.2.1. Materials	42
	2.2.2. Preparation of RDX and HMX nanoparticles	12
	2.2.3. Particles size and morphology	43
	2.2.4. FTIR spectroscopy	43
	2.2.5. Powder X-ray diffraction4	4
	2.2.6. TGA-DSC	44
2.3.	Results and discussion	
	2.3.1. Particles size and morphology	51
	2.3.2. FTIR spectroscopy	51
	2.3.3. Powder X-ray diffraction	52
	2.3.4. TGA-DSC	53
2.4.	Conclusions	56
Refere	ices	56

Chapter 3 Ultrafine carbamazepine nanoparticles with enhanced water solubility and rate of dissolution

Abstr	act60
3.1.	Introduction60
3.2.	Experimental section.
	3.2.1. Materials
	3.2.2. Preparation of CBZ nanoparticles
	3.2.3. Particle size measurement
	3.2.4. Field emission scanning electron microscopy (FESEM) imaging65
	3.2.5. Transmission electron microscopy (TEM) imaging
	3.2.6. Fourier transform infrared (FTIR) spectroscopy65
	3.2.7. Powder X-ray diffraction (XRD)66
	3.2.8. Thermogravimetric analysis coupling with differential scanning calorimetry (TGA-DSC)
	3.2.9. Solubility measurements
	3.2.10. In vitro drug release profile studies
3.3.	Results and discussion
	3.3.1. Optimization of stabilizer concentration
	3.3.2. Effect of drug concentration and presence of PVP on particles size
	3.3.3. Morphology of the nanoparticles70
	3.3.4. Chemical composition of the CBZ nanoparticles and compatibility with PVP74
	3.3.5. Crystal structure
	3.3.6. Thermal characteristics

	3.3.7. Solubility measurement	77
	3.3.8. In vitro dissolution studies	78
3.4.	Conclusions	79
Refere	nces	79

Chapter 4 Controlling the particle size and morphology of griseofulvin nanoparticles using polymeric stabilizers by EASAI method

Abstra	.ct	4
4.1.	Introduction	5
4.2.	Experimental section	
	4.2.1. Materials	87
	4.2.2. Preparation of GF nanoparticles	88
	4.2.3. Particle size and morphology	38
	4.2.4. Drug encapsulation efficiency	89
	4.2.5. Solubility and in vitro dissolution studies	90
	4.2.6. FTIR spectroscopy	90
	4.2.7. XRD analysis	91
	4.2.8. DSC analysis	91
4.3.	Results and discussion	
	4.3.1. The effect of presence of stabilizer and its concentration on particle size	92
	4.3.2. Effect of drug concentration and stabilizers on particle size, zeta potential and morphology	94
	4.3.3. Drug encapsulation efficiency	99

	4.3.4.	Solubility
	4.3.5.	In vitro dissolution studies100
	4.3.6.	Infrared spectroscopy101
	4.3.7.	Crystal nature
	4.3.8.	DSC analysis103
4.4.	Compa	arison of solubility and dissolution profile of GF nano and micro-particles104
4.5.	Conclu	nsion105
Refere	nces	
Chap	ter 5	Effect of polymeric stabilizers on the particle size and morphology
of fen	ofibra	ite nanoparticles
Abstra	ct	
5.1.	Introdu	110 nction
5.2.	Materi	als and methods
	5.2.1.	Materials114
	5.2.2.	Preparation of FF nanoparticles using EASAI method114
	5.2.3.	Particle characteristics 115
	5.2.4.	Solubility, encapsulation efficiency and in vitro dissolution studies115
	5.2.5.	Chemical, crystallographic and thermal characteristics116
5.3.	Result	s and discussion
	5.3.1.	The effect of different stabilizers and their concentration on particle size117
	5.3.2.	Effect of drug concentration on particle size, zeta potential and morphology119
	5.3.3.	Solubility, %EE and drug release profile125
	5.3.4.	Chemical, crystallographic and thermal properties 127

5.4.	Conclu	130 asions
Refere	nces	
Chap	ter 6	Unusual anti-leukemia activity of nanoformulated naproxen and
other	non-s	teroidal anti-inflammatory drugs
Abstra		
6.1.	Introdu	action
6.2.	Materi	als and methods
	6.2.1.	Materials
	6.2.2.	Preparation of nano-NSAID nanoparticles140
	6.2.3.	Characterization
	6.2.4.	Solubility, encapsulation efficiency (%EE) and in-vitro dissolution studies141
	6.2.5.	Cell culture and SRB assay
6.3.	Result	s and discussion
	6.3.1.	Nanoparticles formation mechanism
	6.3.2.	Effect of drug concentration
	6.3.3.	The effect of different stabilizers and their concentrations on particle sizes147
	6.3.4.	Infrared spectroscopy153
	6.3.5.	X-ray diffraction154
	6.3.6.	Thermal characteristics
	6.3.7.	Solubility157
	6.3.8.	In-vitro drug release studies
	6.3.9.	Anticancer activity
6.4.	Conclu	nsions

References		.167
Chapter 7	Conclusions and future perspectives	.173
List of Public	ations	175

Abbreviations

%DL	Percentage drug loading
%EE	Percentage encapsulation efficiency
AC	Acetone
ADR	Adriamycin
AFM	Atomic force microscopy
APIs	Active pharmaceutical ingredients
ASES	Aerosol solvent extraction system
BCS	Biopharmaceutical classification system
ACN	Acetonitrile
CBZ	Carbamazepine
СН	Cyclohexane
d/nm	Diameter in nanometer
DL	Drug loading
DLS	Dynamic light scattering
DMF	Dimethyl formamide
DMSO	Dimethyl sulfoxide
DSC	Differential scanning calorimetry
EA	Ethyl acetate
EASAI Ev	aporation assisted solvent antisolvent interaction
EE	Encapsulation efficiency
EN	Ethanol
EPAS	. Evaporation precipitation into aqueous solution

FDA	Food and drug administration
FESEM	Field emission scanning electron microscopy
FF	
FTIR	Fourier transform infrared
GAS	Gas antisolvent
GBM	Glioblastomamultiforme
GF	Griseofulvin
GI	Growth inhibition
HEMs	High energetic materials
HMX	Octohydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
НРН	High pressure homogenization
НРМС	Hydroxypropyl methylcellulose
HRTEM	High resolution transmission electron microscopy
IBP	Ibuprofen
IR	Infrared
JCPDS	Joint commission for powder diffraction standards
КР	Ketoprofen
LAS	Liquid antisolvent
LDL	Low density lipoprotein
mg	Milligram
ml	Milliliter
mM	Millimolar
MN	

MW	Molecular weight
NAP	Naproxen
NIBS	Non-invasive backscatter optics
nm	Nanometer
NMP	N-methyl pyrrolidone
NPs	Nanoparticles
NSAIDs	Non-steroidal anti-inflammatory drugs
θ	Theta
OLEDs	Organic light emitting diodes
PBS	Phosphate buffer saline
PDI	Polydispersity index
PEGs	Polyethyelene glycols
PGSS	Particles from gas saturated solution/suspension
PLA-PEG	Polylactic acid-polyethyelene glycol
РТА	Phosphotungstic acid
PVA	Poly vinylalcohol
PVP	Polyvinylpyrolidone
PXRD	Powder x-ray diffraction
RDX	1,3,5-trinitroperhydro-1,3,5-triazine
RESS	
RESS-SC Rapid expan	asion of supercritical solution with solid co-solvent
RPM	Revolutions per minute
Ru	

SAA	Supercritical fluid assisted atomization
SCCO2	Supercritical corbondioxide
SCF	
SDS	Sodium dodecylsulfate
SEDS	Solution enhanced dispersion of supercritical fluids
SMEDDS	Self emulsifying drug delivery system
Т	
ТАТВ	
TCA	Trichloroacetic acid
TEM	Transmission electron microscopy
TGA-DSC Thermal gravimetr	ric analysis coupled with differential scanning calorimetry
TGI	
TNT	2-Methyl-1,3,5-trinitrobenzene
UV	Ultraviolet
Vis	Visible
VLDL	Very low density lipoprotein
w/v	Weight to volume ratio
w/w	Weight to weight ratio
WBM	Wet ball milling
XRD	
Z-Average	Average of particles size
α	Alpha
β	Beta

γ	Gaama
δ	Delta
ζ	
λ	
μ	Micro
μm	Micrometer

Abstract

The dramatic change in properties of materials with particle size reduction into nanometer length scales led to the advancement of nanoscience and development of nanotechnology. A plethora of methods were developed to prepare nanoparticles of inorganic materials such as metals, metal oxides and semiconductors with efficient control of their size and shape. However, there are only a few methods available for the preparation of nanoparticles of simple organic compounds. Nanosizing of simple organic compounds such as lipids, dyes, high energetic compounds and pharmaceutical drugs leads to enhancement in some of their desirable properties. Hence, there is a need to develop novel methods for the preparation of simple organic compounds. Development of a novel evaporation assisted solvent antisolvent interaction (EASAI) method is detailed in the present thesis. A number of experimental parameters that affects the particle size such as nature of solvent, solvent to antisolvent ratio, concentration, temperature of antisolvent and presence of stabilizers have been optimized during this study. The applicability of this method has been established by successfully preparing nanoparticles of some high energetic compounds and a number of pharmaceutical drugs with average particle size well below 100 nm. The objective of nanosizing is to enhance the energetic performance while reducing the sensitivity of high energetic compounds. Whereas, particle size reduction leads to substantial increase in solubility and bioavailability of poorly water soluble pharmaceutical drugs. Infact, poor water solubility of pharmaceutical drugs is a major challenge for pharmaceutical companies as nearly 40 % potential drug targets suffers from poor water solubility.

Nanoparticles of military explosives such as RDX and HMX were prepared with the desired crystal morphology. Interestingly, it was found that both the particle size as well as the shape of these high energetic compounds can be controlled by using the EASAI method by choosing an appropriate solvent. Similarly, nanoparticles of Carbamazepine which is an antiepileptic drug were prepared and this has resulted in enhanced solubility and rate of dissolution. It was also found that we can control the particle size of drug nanoparticles by using water soluble and biocompatible polymers as stabilizers, even with high concentration of the drug. Food and drug administration (FDA) approved polymers such as polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA) and hydroxyl propyl methyl cellulose (HPMC) can be used to control the particle size of drugs effectively using EASAI method. Thus, polymer stabilized nanoparticles of Griseofulvin, a potential drug for anticancer therapy and fenofibrate, a widely used hypolipidemic drug having average particle size below 30 nm could be prepared. Interestingly, anti-leukemia activity of the non-steroidal anticancer drugs such as ibuprofen, ketoprofen and naproxen were found to be enhanced by the nanosizing. Naproxen nanoparticles that are stabilized using PVP showed two times higher anti-leukemia activity compared to Doxorubicin.

Thus, a novel EASAI method has been developed for the preparation of nanoparticles of simple organic compounds during the present study and a patent has been filed on this invention. The method can be used to lower the sensitivity of energetic compounds and thus alleviate consequences that are associated with accidental explosions during transportation and storage. At the same time solubility, rate of dissolution and bioavailability of poorly water soluble drugs can be enhanced by nanoformulation using EASAI method. While this can result in more effective

therapy of approved drugs it can also lead to the repositioning of them for novel applications and thus save a lot of time and cost associated with drug development.