Metal Organic Materials Derived Nanostructures for Energy

Conversion and Storage Applications

A Thesis

submitted by

Bandhana Devi

(D15035)

for the award of the degree of

Doctor of Philosophy

SCHOOL OF BASIC SCIENCES INDIAN INSTITUTE OF TECHNOLOGY, MANDI Mandi, Himachal Pradesh, 175005.

@ Indian Institute of Technology Mandi-175005

All rights reserved

Dedicated to Maa Sukrala Devi Ji And My Husband

INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI-175005 (H.P.), INDIA

www.iitmandi.ac.in

Declaration by the Research Scholar

I hereby declare that the entire work personified in this thesis entitled, "Metal Organic Materials Derived Nanostructures for Energy Conversion and Storage Applications" is the result of investigations carried out by me in the School of Basic Sciences, Indian Institute of Technology Mandi, under the supervision of Dr. Aditi Halder (Guide) and Dr. Rik Rani Koner (Co-Guide) for the award of the degree of Doctor of Philosophy and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on findings of other investigators.

Place: Mandi

Signature:

Date:

Name: Bandhana Devi

INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI-175005 (H.P.), INDIA

www.iitmandi.ac.in

Declaration by the Research Advisor

I hereby certify that the entire work in this thesis titled, "Metal Organic Materials Derived Nanostructures for Energy Conversion and Storage Applications" has been carried out by Bandhana Devi under our supervision in the School of Basic Sciences, Indian Institute of Technology Mandi for the award of the degree of Doctor of Philosophy and that no part of it has been submitted elsewhere for any degree or diploma.

Signature:

Signature:

Name of the Guide: **Dr. Aditi Halder** Associate Professor School of Basic Sciences Indian Institute of Technology, Mandi Mandi (H.P.), 175005 Name of the Co-Guide: **Dr. Rik Rani koner** Associate Professor School of Engineering Indian Institute of Technology, Mandi Mandi (H.P.), 175005

Date:

Date:

Writing this thesis entitled "*Metal Organic Materials Derived Nanostructures for Energy Conversion and Storage Applications*" marks the successful culmination of a long campaign characterized as scholarly work that was started in July 2015 and has finally been accomplished, not all by my endeavours. There were many seen and unseen hands who pushed me forward, put me on the right path and enlightened me with their knowledge and experience. This page is a heartfelt acknowledgement to those people who helped me in one or other way in this entire journey of Ph.D.

At the very outset, I would like to thank Almighty from the core of my heart for bestowing endless blessings upon me to carry out my research work successfully as no work is accomplished without His grace and guidance.

I express my deep gratitude to my supervisors Dr. Aditi Halder and Dr. Rik Rani Koner for their supervision and guidance. Their continuous support, immense knowledge, tireless efforts and constant motivation helped me to complete my Ph.D. research work within stipulated time. I am fortunate enough to have their teaching about how to cultivate scientific thoughts.

I am grateful to Director, IIT Mandi for his support and encouragement to all research scholars. I also wish to acknowledge the members of my doctoral committee, Dr. Venkata Krishnan, Dr. Subrata Ghosh, Dr. Pradeep Parmeswaran, and Dr. Viswanath Balakrishnan for their critical appraise of my research work, invaluable comments and insights which made a deep impact on my research.

The research facility at Advanced Materials Research Centre (AMRC) is gratefully acknowledged. My wholehearted thanks to all members of AMRC staff for their assistance in lab work. I am also thankful to the library staff for the help, whenever it was needed.

iii

I wish to acknowledge my seniors at IIT Mandi, Mangili Venkataswarulu, Himmat Singh Kushwaha, Pawan Kumar and Davender Kumar who helped me in my research work during its initial phase. I would like to acknowledge my labmates and friends, Mohammad Saquib, Ankita Mathur, Lalita Sharma, Ravinder Kaushik, Chetna Madan, Harpreet Kaur, Trivender Kumar, Biswajit Roy, Piyush Avasthi, Divya Verma, Deepa Thakur, Nitika Arya, Diksha Gambhir, Naggaraju Nakka, Moolchand Sharma, Ashish Bhatia and Ajay Thakur. I learnt from you all, both professionally and personally.

I wish to acknowledge Dr. Sumit Sinha Ray, Dr. Narsa Reddy Tummuru, Ashish Kakoria and Bhaskara Rao for collaboration. I also acknowledge Dr. Ankush Bag for helping us in our experimental work.

I like to acknowledge Puneet Sood for his help during solving of crystal structures of our compounds. I also acknowledge the staff members, Arjun, Satuti, Anoop Kumar, Pratik Pathania, Sushma, Rakhi Verma, Soniya Gupta and Alka Thakur for their helpful and supporting attitude.

I would like to express my wholehearted gratitude to Ministry of Human Resource Department (MHRD), India for the fellowship during my journey of Ph.D.

I would like to thank my friends, Sumiti Sharma and Priyanka Khandelwal for their selfless support as true friends. Thankyou Sumiti for always helping me in my difficult times.

Last but not least, I would like to share my deep eternal gratitude to my parents and in-laws family. I manifest special thanks to my mother who holds a very high place in my life for teaching me deep morality, discipline, respect to hard work and willingness to make efforts without which I would not have found myself in the current place. I also thank my maternal grandmother who is the most influencing person in my life. Thank you for your unconditional love, wisdom, deep patience, endless blessings and unwavering faith in me. I would like to mention my mother-in-law, Shanti Devi Ji who is in Heavenly world and always shower her blessings upon us. A special mention goes to my sister-in-law's, Veena Devi and Pooja Devi who are like my own sisters. Thank you, Veena dee for spending tough days with me in IIT campus during my thesis writing.

I would like to express my warm words of gratitude to my husband, Kulbir Singh who motivated me to start and then supported me throughout this journey, taught me to be a strong person, helped me to balance my academic and personal life. Thank you for being so selfless, wise and strong to bear all the responsibilities, which I would like to share with you in future. A special thanks goes to my son, Dhiren Singh. Your twinkling eyes, eternal smile and innocence make me forget all my tiredness and worries. You have made me stronger and more responsible than I was before.

Bandhana Devi

<u>Preamble</u>

The increasing population of the world and decreasing fossil fuel reserves have put a lot of focus on renewable energy sources. Energy conversion systems like fuel cell and energy storage system like supercapacitors have carved an important niche in energy field with a lot of scope for improvement. The development of nanomaterials with dual application for energy conversion as well as energy storage will decrease the energy loss and increase the overall energy efficiency. Metal organic materials (MOMs) which include metal organic frameworks, metal organic gels and coordination polymers are very important class of hybrid materials having potential of energy conversion and energy storage application. These hybrid materials can act as a template for generating various kinds of heterostructures like metal/carbon, metal oxide/carbon, metal/metal oxide/carbon with favourable heteroatom doping of N, O, P etc. In addition, these developed heterostructures do not require external conductive substrate like Vulcan carbon because of in-situ graphitization which adds to their long-term stability and durability for concerned energy processes. In this direction, we synthesized some new MOMs derived nanostructures and explored their application for energy conversion (electrocatalysis) and energy storage (supercapacitors). The complete chapter wise thesis overview has been given below:

Chapter 1 describes the general overview of energy conversion and energy storage devices and their importance in daily life. The energy conversion system includes the detailed explanation about fuel cell and electrolyzer, their importance, advantages, drawbacks and various parameters required for their improvement in practical applications. Energy storage devices like supercapacitors, their types, advantages and current requirements for improvement have also been explained. Then synthesis techniques for MOMs, importance of pyrolysis and application of MOM derived nanomaterials for energy conversion as well as energy storage have been explained. The need for dual application in energy conversion as well as energy storage has been highlighted.

Chapter 2 begins with the synthesis of a new iron containing metal organic gel, its conversion into xerogel which acts as a precursor for synthesis of a bifunctional nanocomposite (Fe₃O₄/Fe/C). The synthesized nanocomposite was found to have dual application for electrocatalysis (ORR) and energy storage (supercapacitor).

Chapter 3 shows the synthesis of a new Ni based dimeric complex and generation of a trifunctional electrocatalyst from this dimeric complex by optimizing the annealing/pyrolysis conditions. The synthesized electrocatalyst Ni-NC700 showed highly efficient electrocatalytic activity for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The excellent durability and stability of Ni-NC700 catalyst has been explained and also compared with the state-of-the-art catalyst i.e. Pt/C for ORR and HER and RuO₂ for OER.

Chapter 4 continues with the synthesis of a new Co based MOF containing 1,3, 5-trimesic acid and 1,10-phenanthroline. This MOF was used as a precursor for synthesis of Co-NC3 nanostructure by optimizing the pyrolysis conditions. Co-MOF was pyrolyzed at 700 °C for duration of 1 h, 3 h and 5 h. The obtained Co-NC3 (annealing at 700 °C for 3 h) showed highly efficient ORR activity comparable to commercial 20 wt.% Pt/C. The same was also explored for supercapacitor application. As a proof of concept, solid state supercapacitor device was assembled showing application in glowing of light emitting diode (LED). The device was also used for wireless sensor node application.

Chapter 5 describes the synthesis of a new lanthanide (Dy) based coordination polymer and its application for oxygen reduction reaction has been explored. Optimized pyrolysis process (800 °C, Ar, 1 h) was used for formation of a porous nanostructure (Dy₂O₃/C) which was

represented as Dy-800. Role of graphitization in enhancement of ORR activity has been studied. The ORR activity of self-supported annealed sample has been compared with the parent coordination polymer using Vulcan carbon as a support, in order to justify the role of annealing for enhancing the durability of the catalyst.

Chapter 6 This is the last chapter which includes the overall summary and conclusion of the research work explained above with focus on its importance and applicability in day to day life. This research work is expected to be useful in the field of energy conversion and energy storage especially in the development of devices involving multifunctional application. The following publications are related to the research work shown in this thesis:

Publications:

- B. Devi, R. R. Koner and A. Halder "A dysprosium based new coordination polymer and its application towards the oxygen reduction reaction" *New Journal* of *Chemistry*, 2017, 41(16), 7972-7979.
- B. Devi, M. Venkateswarulu, H. S. Kushwaha, A. Halder and R. R. Koner "A PolyCarboxyl Decorated Fe^{III} -Based Xerogel -Derived Multifunctional Composite (Fe₃O₄/Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application" *Chemistry A European Journal*, 2018, 24(25), 6586-6594.
- B. Devi, R. R. Koner and A. Halder "Ni (II) -Dimeric Complex -Derived Nitrogen -Doped Graphitized Carbon -Encapsulated Nickel Nanoparticles: Efficient Trifunctional Catalyst for Oxygen Reduction Reaction, Oxygen Evolution Reaction and Hydrogen Evolution Reaction" ACS sustainable chemistry and Engineering, 2019, 7(2), 2187-2199.

4. B. Devi, A. Jain, B. Roy, B. Rao, N. R. Tummuru, A. Halder and R. R. Koner "Cobalt -Embedded N-Doped Carbon Nanostructures for Oxygen Reduction and Supercapacitor Applications" ACS Applied Nanomaterials, 2020, DOI: 10.1021/acsanm.0c00732.

Other Publications:

- A. Kakoria, B. Devi, A. Anand, A. Halder, R. R. Koner and S. S. Ray "Gallium Oxide Nanofibers for Hydrogen Evolution and Oxygen Reduction" ACS Applied Nanomaterials, 2019, 2, 64-74.
- S. Singh, S. Moun, B. Devi, R. R. Koner, A. Halder and C. S. Yadav "Field induced single molecule magnet behavior in Dy-based coordination polymer" *Europhysics Letters*, 2020, 130, 47002.
- M. R. Mulay, B. Devi, A. Mathur and A. Halder "Flax Meal Assisted Controlled Green Synthesis of Nanostructured Nickel Ferrite as Durable Bi-functional Oxygen Electrocatalyst" (Under preparation).
- 4. B. Devi, P. K. Samal, V. Thakur and A. Halder "Walnut shell derived Activated Carbon- Polyaniline Porous Nanocomposite for Supercapacitors" (Under Preparation).

Declaration	i
Thesis Certificate	ii
Acknowledgements	iii
Preamble	vi
Table of Contents	X
List of abbreviations	XV
List of figures	xvii
List of Tables	xxiv
Chapter 1: Introduction	1
1.1 Overview	1
1.2 Metal Organic Materials (MOMs)	1
1.3 Energy Conversion	4
1.3.1 Oxygen Reduction Reaction (ORR)	5
1.3.2 Oxygen Evolution Reaction (OER)	10
1.3.3 Hydrogen Evolution Reaction (HER)	12
1.4 Energy Storage	13
1.5 Material Selection	14
1.5.1 Advantages of Choosing MOM based Precursors	16
1.6 Literature Review	17

1.6.1 MOMs based Materials for Multifunctional Electrocatalysis	
(ORR, OER and HER)	17
1.6.2 MOM based Nanomaterials for Dual Application of Energy	
Conversion (ORR) and Energy Storage (Supercapacitor)	19
1.7 Observations after Literature Review	20
1.8 Aim and Objectives	21
References	22
Chapter 2: Iron Based Metal Organic Material Derived Nanocomposite	
for Oxygen Reduction Reaction and Supercapacitor Application	33
2.1 Introduction	34
2.2 Experimental Section	37
2.2.1 Synthesis of the Organic Ligand (H4BTA) and its Characterization	37
2.2.2 Synthesis of the Fe-based Gel (MOG-Fe) and the Xerogel (MOX-Fe)	39
2.2.3 Synthesis of the Fe ₃ O ₄ /Fe/C Composite	39
2.3 Materials and Instrumentation	39
2.4 Electrochemical Measurements	40
2.4.1 Electrochemical Oxygen Reduction Properties of the Fe ₃ O ₄ /Fe/C Composite	41
2.4.2 Electrochemical Supercapacitor Properties of the Fe ₃ O ₄ /Fe/C Composite	41
2.5 Results and Discussion	41
2.5.1 Characterization of the Morphology and Structure	41
2.5.2 ORR activity	49

xi

2.5.3 Performance as an Electrode Material for Supercapacitors	55
2.5.4 Mechanistic Study of Electrochemical Charge Storage and ORR on Fe-700	59
2.6 Conclusion	60
References	61
Chapter 3: Ni (II) Dimeric Complex Derived Trifunctional Electrocatalyst	
for Oxygen Reduction Reaction, Oxygen Evolution Reaction and Hydrogen	
Evolution Reaction	68
3.1 Introduction	69
3.2 Experimental Details	71
3.2.1 Materials and Instrumentation	71
3.2.2 Synthesis of Ni (II)-Dimer Complex	72
3.2.3 Carbonization of Ni (II)-Dimer Complex	72
3.3 Electrochemical Measurements	73
3.3.1 Catalyst Ink Preparation	73
3.3.2 Electrochemical ORR, OER and HER Measurements	73
3.4 Results and Discussion	74
3.4.1 Characterization of the Single-Crystal Structure of Ni (II)-Dimer Complex	74
3.4.2 Thermal Analysis of Ni (II)-Dimer Complex	76
3.4.3 Microstructural Characterization of Ni-NC Catalysts	77
3.4.4 Electrocatalytic Activity	87
3.4.4.1 ORR Activity	87

3.4.4.2 OER Activity	92	
3.4.4.3 HER Activity	98	
3.5 Conclusion	105	
References	105	
Chapter 4: MOF derived Cobalt Embedded N-Doped Carbon Nanostructure		
for Enhanced Oxygen Reduction Reaction and Supercapacitor Application	113	
4.1 Introduction	114	
4.2 Experimental Details	115	
4.2.1 Materials and Instrumentation	115	
4.2.2 Synthesis of Co-MOF	116	
4.2.3 Synthesis of Co-NC catalyst	117	
4.3 Electrochemical Measurements	118	
4.3.1 Electrochemical Oxygen Reduction Properties of Co-NC Catalyst	118	
4.3.2 Electrochemical Supercapacitor Properties of Co-NC Catalyst	118	
4.3.2.1 Preparation of Gel electrolyte	119	
4.3.2.2 Fabrication of Asymmetric Supercapacitor	119	
4.4 Results and Discussion	120	
4.4.1 Characterization of the Single-XRD Structure of Co-MOF	120	
4.4.2 FTIR and Thermal Analysis of Co-MOF	123	
4.4.3 Microstructural Characterization of Co-NC Catalysts	124	
4.4.4 Electrocatalytic Activity	131	

4.4.5 Charge-Discharge Studies for Co-NC3 Catalyst	139
4.4.6 Solid State Asymmetric Supercapacitor Device	144
4.4.7 Application for Photovoltaic ased Sensor Nodes	146
4.5 Conclusion	147
References	148
Chapter 5: Synthesis and Exploration of Lanthanide Group Coordination	
Polymer Derived Electrocatalyst for Oxygen Reduction Reaction	153
5.1 Introduction	154
5.2 Experimental Methods	156
5.2.1 Solvothermal Synthesis of Dy-CP	156
5.2.2 Graphitization of Dy-CP	157
5.2.3 Electrochemical Measurements	158
5.2.4 Characterization of the Synthesized Dy-CP and Electrocatalysts	158
5.3 Results and Discussion	159
5.3.1 Description of Single Crystal Structure of Dy-CP	159
5.3.2 Thermal Analysis of Dy-CP	162
5.3.3 Microstructural Characterization Dy-CP	163
5.3.4 ORR activity	166
5.4 Conclusion	173
References	173
Chapter 6: Conclusions and Future Scope	177