First principles investigation of some rare-earth free permanent magnets

A Thesis Submitted for the Degree of

Doctor of Philosophy

in the School of Basic Sciences

by ROHIT PATHAK (E. NO. D14016)

School of Basic Sciences Indian Institute of Technology Mandi Mandi-175001, India August 2020

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this Thesis is the result of investigations carried out by me in the **School of Basic Sciences**, Indian Institute of Technology Mandi, under the supervision of **Dr. Arti Kashyap** and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place:

Signature:

Date:

Name:

Declaration by the Research Advisor

I hereby certify that the entire work in this Thesis has been carried out by **Rohit Pathak**, under my supervision in the **School of Basic Sciences**, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma.

Signature:

Name of the Guide:

Date:

ABSTRACT

Development of rare-earth free, permanent magnetic materials plays a major role in today's world of technological advancement. Permanent magnets find applications in electric motors, hard discs drive, loudspeakers and many more. Sm-Co and Nd-Fe-B are two very famous rare-earth based permanent magnets in terms of commercial applications because of their very good hard magnetic properties. But due to limited resources and volatility of price of rare-earth metals, there is a high demand for rare-earth free, permanent magnets from technological and scientific communities since the last few decades.

First principles-based density functional theory (DFT) is one of the crucial realms of research for designing tailor-made materials with specific properties. DFT calculations have proven to be very useful and powerful tool in understanding atomistic origin of magnetic properties of permanent magnets as well. These calculations not only help understand the experimental findings but also open up new directions for designing the experiments. DFT calculations have the capability to predict and explore tuning of various electronic and magnetic properties of materials.

This dissertation investigates the electronic structure and magnetic properties of few rareearth free permanent magnets which are also experimentally realized. Out of several known types of rare-earth free permanent magnet materials, our investigation was focused on three different kinds of materials: (i) transition metal borides (iron doped Ti₃Co₅B₂), important in context of alnico magnets, (ii) two cobalt based intermetallic compounds (Co₂TiSi and Co_{1+x}Sn) and one silicide (Co₃Si) and (iii) binary (four phases of Fe-Pd) and ternary (four phases of boron doped Fe-Pd) intermetallic compounds. All of them are important and potential candidates for rare-earth free permanent magnets. Initial two chapter of the dissertation deals with the introductory background of rareearth free permanent magnets and with theoretical methodologies for studying and understanding various magnetic properties relevant to permanent magnetism.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor, Dr. Arti Kashyap, for providing me a wonderful opportunity to work in her research group. She has also provided me with some golden opportunities to visit and work with her collaborators, at the University of Nebraska Lincoln (UNL), Nebraska, USA, and Institute of Metal Physics (IMP), Ekaterinburg, Russia. She has guided me with her invaluable suggestions, lightened me up in many ways and encouraged me a lot. Next, I am thankful to Prof. Ralph Skomski, from the Department of Physics and Astronomy, University of Nebraska, Lincoln, for his constructive suggestions in my manuscript writings and providing valuable comments on it. Working with him was a fruitful experience. I am also grateful to him for providing me, the funding for my stay at UNL.

Next, I would like to thank my doctoral committee members, Dr. Bindu Radhamany, Dr. Ajay Soni, Dr. Hari Varma, and Dr. Jaspreet Kaur Randhawa for their constantl evaluation of my research objectives and inputs to improve my presentation skills. In addition, I would also like to thank Dr. Sudhir Kumar Pandey, faculty from School of Engineering, IIT Mandi for having stimulating discussions with me, on physics, life, religion, philosophy and much more.

Finally, I would like to thank all my dear friends for always being there to help, support and motivate me both in academic and non-academic matters. The list is too long to mention here but to name a few, I would like to thank, the graduated lab members from my group, Dr. Pankaj Sahota, Dr. Sanjay Rathee and Dr. Renu Chaudhry and present lab members, Imran, Yogesh and Ruchika. Along with that, I would also like to thank my friends Mohit, Krishan, Priyamedha, Shiva, Antik at IIT Mandi, and friends, Kamal, Debjyoti, Swagat, Ashish, Archana, and Arun, from outside of IIT Mandi. I would also like to thank other departmental faculties and staff and for making my Ph.D. time serene here at IIT Mandi. In the end, I would like to thank all my family members for making my Ph. D. life joyful and peaceful.

Finally, I would like to thank, IIT Mandi, Himachal Pradesh and the University of Nebraska Lincoln, for providing me the high-performance computing facilities that have been instrumental in achieving my research objectives.

LIST OF PUBLICATIONS

THE FOLLOWING PUBLICATIONS AND MANUSCRIPTS ARE BASED ON THIS THESIS:

- R. Pathak, I. Ahamed, W. Y. Zhang, S. Vallopilly, D. J. Sellmyer, R. Skomski, and A. Kashyap; "Half-metallic magnetism in Ti₃Co_{5-x} Fe_xB₂", AIP Advances 7, 055713 (2017).
- R. Pathak, B. Balasubramanian, D. J. Sellmyer, R. Skomski, and A. Kashyap, "Magnetocrystalline anisotropy of Co₃Si (001) films from first principles", AIP Advances 9, 035128 (2019).
- ✤ Y. Jin, S. Valloppilly, P. Kharel, R. Pathak, A. Kashyap, R. Skomski, D. J Sellmyer, "Unusual perpendicular anisotropy in Co₂TiSi films" J. Phys. D: Appl. Phys. 52 (3), 035001, (2018).
- R. Pahari, B. Balasubramanian, R. Pathak, M. C. Nguyen, S. R. Valloppilly, R. Skomski, A. Kashyap, C. Z. Wang, K. Ho, G. C. Hadjipanayis, and D. J. Sellmyer, "Quantum phase transition and ferromagnetism in Co_{1+x} Sn "Phys. Rev. B 99, 184438, (2019).
- R. Pathak, O. A. Golovnia, E. G. Gerasimov, A. G. Popov, N. I. Vlasova, R. Skomski and A. Kashyap, "Ab initio study of the magnetic properties of possible phases in binary Fe-Pd alloys, J. Magn. Magn. Mater., 499, 166266 (2020).
- R. Pathak and A. Kashyap, "Boron interstitial in ordered phases of Fe-Pd alloys: A first principle study" (communicated to J. Magn. Magn. Mater)

OTHER PUBLICATIONS:

- R. Pathak, Y. Jin, R. Choudhary, R. Skomski, G. Hadjipanayis, D. Sellmyer and A. Kashyap, "Spin Localized Magnetism and Electron Transport in Fe₂Ti₁₋ _xCo_xSi." IEEE Int. Magn. Conf. (INTERMAG), Dublin, (2017)
- ✤ Z. Muthui, R. Pathak, R. Musembi, J. Mwabora, R. Skomski, and A. Kashyap, "First-principle investigation of structural, electronic and magnetic properties of Co₂Vin and CoVIn Heusler compounds", AIP Advances 7, 055705 (2017).
- I. Ahamed, R. Pathak, R. Skomski, and A. Kashyap; "Magnetocrystalline anisotropy of ε-Fe₂O₃", AIP Advances 8, 055815 (2018).
- ✤ A. Kashyap, R. Pathak, D. J. Sellmyer, and R. Skomski, "Theory of Mn-Based High-Magnetization Alloys", IEEE Trans. Magn. 54, 1 (2018).

LIST OF FIGURES

Fig. 1.1 Schematic diagram: orbital motion of electron 18
Fig. 1.2 Direct exchange as a function of the interatomic distance r_a divided by the radius
of the d orbital <i>r_{3d}</i>
Fig. 1.3 Schematic diagram for super-exchange interaction in MnO22
Fig. 1.4 Typical hysteresis plot of a magnet
Fig. 1.5 Angle between easy axis and magnetization in a hexagonal system27
Fig. 1.6 Angle between easy axis and magnetization in a cubic system
Fig. 2.1 Flow chart of the self-consistency cycle based on KS equations in DFT43
Fig. 2.2 Step by step scheme of Monkhorst Pack to generate special <i>k</i> -points
Fig. 2.3 A schematic diagram for the pseudo wavefunction and potential along with true
wavefunction and potential as a function of distance from the nucleus
Fig. 3.1 Crystal structures (unit cells) of the considered $Ti_3(Co, Fe)_5B_2$ materials: (a) bulk
and (b) thin film along (001) direction62
Fig. 3.2 Densities of states in bulk Ti ₃ Fe ₅ B ₂ : (a) total DOS and (b) partial DOS64
Fig. 3.3 Total densities of state for the thin films, which are all ferromagnetic: (a)
Ti ₃ Co ₅ B ₂ , (b) Ti ₃ Co ₄ FeB ₂ , (c) Ti ₃ CoFe ₄ B ₂ , and (d) Ti ₃ Fe ₅ B ₂ 66
Fig. 3.4 Partial density of states for thin-film Ti ₃ CoFe ₄ B ₂ 67
Fig. 4.1.1 Unit cells considered in calculations for Co ₃ Si materials: (a) bulk and (b) thin
film 0.41 nm (c) thin film 0.82 nm and (d) thin film 1.23 nm70
Fig. 4.1.2 Total density of states for bulk Co_3Si ; the Fermi level is shifted to $E = 0$ 72
Fig. 4.1.3 Total density of states for thin films of different thicknesses (a) 0.41 nm (b)
0.82 nm and (c) 1.23 nm for (001) oriented Co ₃ Si and the Fermi level is shifted to $E = 0$
Fig. 4.1.4 Magnetic moment as a function of film thickness

Fig. 4.1.5 Anisotropy constant as a function of inverse layer thickness
Fig. 4.2.1 Chemical disorder in pseudocubic Co ₂ TiSi thin films: (a) average site
occupancies according to Rietveld analysis (dark orange: Co85Ti15, light orange:
Ti70Co30, light blue: 65% Si) and (b) example of a chemically disordered unit cells having
two antisite defects. As elsewhere in the paper, red, yellow, and blue atoms denote Co,
Ti, and Si, respectively78
Fig. 4.3.1 Unit cell of NiAs-ordered $Co_{1+x}Sn$: (a) CoSn and (b) $Co_{1.5}Sn$. The excess Co
(x) occupies the interstitial 2d sites, which exhibit a trigonal-prismatic coordination by
the Co atoms of the CoSn host lattice
Fig. 4.3.2 Moment formation in interstitial $Co_{1+x}Sn$: (a) single interstitial Co atom in a 3
x 3 x 3 supercell, corresponding to a net composition $Co_{1.02}Sn$ and (b) magnetic cluster
(light blue) in a 2 x 2 x 2 supercell, corresponding to Co _{1.25} Sn
Fig. 4.3.3 Total density of states (DOS) from DFT calculations: (a) CoSn (paramagnetic)
and (b) Co_2Sn (ferromagnetic). The ferromagnetism can be seen from the spin-dependent
shift of the dominant Co 3 <i>d</i> peak just below the Fermi level
Fig. 5.1 Magnetization of the FePd sample annealed at 723 K as a function of magnetic
field
Fig. 5.2 Field dependence of d^2M/dH^2 of the sample annealed at 723 K95
Fig. 5.3 Dependences of $M_{\rm s}$, $H_{\rm a}$, $K_{\rm eff}$, and $H_{\rm c}$ of the deformed FePd samples on annealing
time at 723 K96
Fig. 5.4 Temperature dependence of susceptibility (a) and its first derivative (b) of the
deformed FePd samples at various annealing times at 723 K97
Fig. 5.5 Line diagrams of the main reflections of the $L1_0$, $L1_0^*$ modified, orthorhombic
Fe5Pd3, and tetragonal FePd2 phases
Fig. 5.6 Unit cells of all ordered, disordered, and deformed structure calculations: (a)
ordered FePd ($L1_0$), (b) $L1_0^*$ modified, (c) ordered FePd ₃ ($L1_2$), (d) ordered Fe ₃ Pd ₅ 7

(Pt5Ga3-type) (e) ordered Fe2Pd (Ni2Al-type), (f) disordered A1 FePd (g) disordered A6
FePd and (h) ordered tetragonal FePd ₂ 101
Fig. 5.7 Anisotropy constant as a function of Fe atomic percentage of Fe-Pd ordered
compounds107
Fig. 5.8 Curie temperature behavior in Fe-Pd alloys107
Fig. 6.1 Octahedral sites in the supercell for energetically stable B-doped $L1_0$ FePd alloys
for (a) 6.25 % B, (b) 12.5 % B and (c) 18.75 % B of doping114
Fig. 6.2 Density of states of nearest and next-nearest neighbor iron and palladium atom
in 6.25 at. % doped <i>L</i> 1 ₀ FePd system
Fig. 6.3 Curie temperature variation in $L1_0$ FePd with boron doping117
Fig. 6.4 Supercell of energetically stable B doped FePd ₃ structures for (a) 3.12 % B, (b)
6.25 % B and (c) 12.5 % of B doping
Fig. 6.5 Density of states of nearest and next-nearest neighbor palladium atom in 3.12 at.
% doped $L1_2$ FePd ₃ system
Fig. 6.6 Curie temperature variation in FePd ₃ with boron doping123
Fig. 6.7 Supercell of energetically stable B doped FePd ₂ structures for (a) 2.08 % B, (b)
4.16 % B and (c) 8.32 % of B doping
Fig. 6.8 Density of states of nearest and next-nearest neighbor iron and palladium atom
in 2.08 at. % doped FePd ₂ system126
Fig. 6.9 Curie temperature variation in FePd ₂ with boron doping127
Fig. 6.10 Conventional unit cell of energetically stable B doped Fe ₃ Pd ₅ structures for (a)
6.25 % B, (b) 12.5 % B and (c) 18.75 % of B doping
Fig. 6.11 Density of states of nearest and next-nearest neighbor iron and palladium atom
in 6.25 at. % doped Fe ₃ Pd ₅ system
Fig. 6.12 Curie temperature variation in Fe ₃ Pd ₅ with boron doping132

LIST OF TABLES

Table 1.1 A summary of the different types of magnetic materials 19
Table 3.1 Lattice parameters and magnetic order for all four considered bulk compounds
Table 3.2 Lattice parameters and magnetic moments per thin-film supercell 65
Table 3.3 First anisotropy constants K_1 for the thin films
Table 4.1.1 Anisotropy constants and magnetic moments for bulk and thin-film Co ₃ Si
Table 5.1 Experimental lattice parameters, theoretically optimized lattice parameters,
formation energy ($\Delta E_{form.}$) and average magnetic moment per atom and formula units of
all considered phases
Table 5.2 Spin magnetic moment, orbital magnetic moment, and total ground state energy
for all the magnetization direction considered along with magnetocrystalline anisotropy
energy (MAE) and favorable magnetization directions of all ordered and disordered
structure104
Table 6.1 The optimized lattice parameters, magnetization, and formation energy of B
doped <i>L</i> 1 ₀ FePd115
Table 6.2 The optimized lattice parameters, magnetization, and formation energy of B
doped FePd ₃ 121
Table 6.3 The optimized lattice parameters, magnetization, and formation energy of B
doped FePd ₂ 125
Table 6.4 The optimized lattice parameters, magnetization, and formation energy of B
doped Fe ₃ Pd ₅

TABLE OF CONTENTS

Abstract	1
Acknowledgements	3
List of publications	5
List of figures	6
List of tables	9
1. Rare-earth free permanent magnet	
1.1 Introduction	14
1.2 Key properties of permanent magnets	17
1.2.1 Magnetization	17
1.2.2 Types of magnetic materials	
1.2.3 Exchange interactions and Curie temperature	20
1.2.4 Energy product	23
1.2.5 Magnetic anisotropy	24
1.3 Objective of the thesis	29
1.4 Outline of the thesis	
2. Density functional theory	
2.1 Introduction	34
2.2 Many body Schrodinger equation	34
2.3. The Hartree and Hartree-Fock method	
2.4 Thomas-Fermi model	
2.5 Density Functional Theory	
2.5.1 Hohenberg-Kohn theorem	

2.5.2 Kohn-Sham equations	40
2.6 Approximations to exchange-correlation energy	43
2.6.1 Local density approximation (LDA)	44
2.6.2 Generalized gradient approximation (GGA)	45
2.7 Relativistic Approach to DFT	47
2.7.1 Noncollinear Magnetism	47
2.8 Bloch's Theorem	49
2.9 Generation of special <i>k</i> -points in Brillouin zone	50
2.9.1 Monkhorst Pack scheme	50
2.10 Electronic structure methods	52
2.10.1 Pseudopotentials (PP)	52
2.11 Vienna Ab-Initio Simulation Package (VASP)	58
2.11.1 Magnetic anisotropy energy (MAE) using VASP	59

3. Magnetics of iron doped $Ti_3Co_5B_2$

3.1 Introduction	61
3.2 Method of calculations	62
3.2.1 Structural details	62
3.2.2 Density functional calculations	63
3.3 Results and discussion	63
3.3.1 Bulk calculations	63
3.3.2 Thin film calculations	64
3.4 Conclusions	68

4. Magnetics of cobalt based compounds	
4.1 Magnetics of Co ₃ Si	69

4.1.1 Introduction	69
4.1.2 Structural details and methodology	70
4.1.3 Results and discussion	71
4.1.4 Conclusions	75
4.2 Magnetics of Co ₂ TiSi	75
4.2.1 Introduction	75
4.2.2 Methodology	76
4.2.3 Results: Origin of perpendicular anisotropy	77
4.2.4 Conclusions	79
4.3 Magnetics of Co _{1+x} Sn	80
4.3.1 Introduction	80
4.3.2 Structural and computational details	84
4.3.3 Results and discussions	85
4.3.4 Conclusions	88

5. Magnetics of ordered and disordered phases of Fe-Pd

5.1 Introduction	89
5.2 Computational and experimental details	92
5.3 Results and discussions	93
5.3.1 Some aspects of magnetic properties of FePd during phase transformation	93
5.3.2 Ab-initio calculation	99
5.4 Conclusions	.108

6. Magnetics of boron doped ordered phases of Fe-Pd
6.1 Introduction
6.2 Computational methodology

6.3 Results and Discussion	112
6.3.1 Boron interstitials in $L1_0$ FePd	113
6.3.2 Boron interstitials in $L1_2$ FePd ₃	119
6.3.3 Boron interstitials FePd ₂	124
6.3.3 Boron interstitials Fe ₃ Pd ₅	128
6.4 Conclusions	133
7. Summary and outlook	136

ibliography141
