Surface Engineering of CVD Grown Carbon Nanostructures for Supercapacitor Electrode Applications

A THESIS

submitted by

Piyush Kumar Avasthi (Roll No. D15011)

for the award of the degree

of

Doctor of Philosophy

School of Engineering INDIAN INSTITUTE OF TECHNOLOGY MANDI Himachal Pradesh, 175005, INDIA August 2020

CONTENTS

	Description	Page No.
IN	IDEX	Ι
DECLARATION BY RESEARCH SCHOLAR		
DECLARATION BY RESEARCH ADVISOR		V
PREAMBLE		VI
DEDICATION		VII
A	CKNOWLEDGEMENT	VIII
Li	st of figures	IX
Li	st of tables	.XV
1.	Introduction	
	1.1. Overview of energy scenario	1
	1.2. Energy storage and supercapacitors	1
	1.2.1.Electrical double layer capacitor	3
	1.2.2.Pseudocapacitor	5
	1.3. Carbon and transition metal based materials for supercapacitor	7
	applications	0
	1.4. Role of surface engineering in supercapacitor performance	9
	1.5. Motivation and objectives	11 13
2	1.6. References	13
Ζ.	Experimental methods	17
	2.1. Materials synthesis techniques	17 17
	2.1.1.Sputtering	17
	2.1.2.Chemical vapor deposition 2.1.3.Atomic layer deposition	10
		20
	2.2. Materials characterization techniques	20 20
	2.2.1.Scanning electron microscopy 2.2.2.Transmission electron microscopy	20
	2.2.3.X-ray diffraction	23
	2.2.4.Raman/IR spectroscopy	24
	2.2.5.X-ray photoelectron spectroscopy	26
	2.2.6.Contact angle measurements	26
	2.3. Electrochemical measurements	27
	2.3.1.Cyclic voltammetry	27
	2.3.2. Galvanostatic charge discharge	28 28
	2.3.3.Electrochemical impedance spectroscopy 2.4. Error analysis, calibration and data repeatability	28 30
	2.5. References	30 32
3	Tuning the wettability of vertically aligned CNT-TiO ₂ hybrid	52
5.	• • • •	
	electrodes	34
	Abstract	34 34
	3.2. Experimental details	34 36
	3.2.1. CVD growth of VACNT	36
		50

	3.2.2. Contact angle measurements	36
	3.2.3. Conformal coating of TiO_2	37
	3.2.4. Electrochemical measurements	37
	3.3. Results and discussion	37
	3.4. Conclusions	51
	3.5. References	44
4.	Aligned CNT forests on stainless steel mesh for flexible	
•••	supercapacitor electrode	
		54
	Abstract	_
	4.1. Introduction	54
	4.2. Experimental methods	57
	4.2.1. Substrate cleaning and pretreatment	57
	4.2.2. CVD growth of VACNT on stainless steel mesh	57 57
	4.2.3.Conformal coating of TiO ₂	57
	4.2.5. Electrochemical measurements	57
	4.3. Results and discussion	58
	4.4. Conclusions	30 77
_	4.5. References	77
5.	Fabrication of iron oxide-CNT based flexible asymmetric	
	solid state supercapacitor device with high cyclic stability	
	Abstract	81
	5.1. Introduction	81
	5.2. Experimental methods	83
	5.2.1. CNT and iron oxide growth on meter scale long stainless steel mesh	83
	5.2.2.CVD growth of iron oxide on stainless steel mesh	83
	5.2.3.CVD growth of CNT on stainless steel mesh	83
	5.2.4. Material characterizations	83
	5.2.5. Electrochemical measurements in aqueous electrolytes	84
	5.2.6. Solid state device fabrication and its electrochemical measurements	84
	5.3. Results and discussion	84
	5.4. Conclusions	101
	5.5. References	101
6.	Surface engineered superhydophilic CNF and Molybdenum	
	oxide nanostructures with enhanced supercapacitor	
	- · ·	
	performance	
	Abstract	104
	6.1. Introduction	104
	6.2. Experimental methods	106
	6.2.1.CVD growth of CNF	106
	$6.2.2.CVD$ growth of MoO_2 on CNF	106
	6.2.3.Electrochemical measurements for CNF	106
	6.2.4.CNF symmetric device fabrication and demonstration	107
	6.2.5. Electrochemical Measurements for CNF-MoO ₂	107
	6.3. Results and discussion	107
	6.3.1.CVD growth of CNF	107
		108

6.3.2. Structural, microstructural and wettability investigations for CNF	112
6.3.3.Surface analysis	113
6.3.4.Electrochemical analysis	
6.3.5.Electrochemical analysis for solid state symmetric device and demonstration	118
6.3.6.CVD growth of CNF-MoO ₂	121
6.3.7. Structural, microstructural, elemental and wettability investigations for CNF -MoO ₂ hybrid	121
6.3.8.Surface analysis of CNF-MoO ₂	123
6.3.9.Electrochemical analysis of CNF-MoO ₂	124
6.4. Conclusions	126
6.5. References	127
7. Summary and future scope	130
7.1. Summary	130
7.2. Future scope	132
Thesis publications	135
Other publications	136

INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI- 175 005 (H.P.), INDIA

<u>www. iitmandi.ac.in</u>

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this Thesis entitled "**Surface Engineering of CVD Grown Carbon Nanostructures for Supercapacitor Electrode Applications**" is the result of investigations carried out by me in the *School of Engineering*, Indian Institute of Technology Mandi, under the supervision of *Dr. Viswanath Balakrishnan*, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgments have been made wherever the work described is based on finding of other investigators.

IIT Mandi (H.P.) Date: Indian Institute of Technology Signature:

Piyush Kumar Avasthi

INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI- 175 005 (H.P.), INDIA

<u>www. iitmandi.ac.in</u>

Declaration by the Research Advisor

I hereby certify that the entire work in this Thesis has been carried out by *Piyush Kumar Avasthi*, under my supervision in the *School of Engineering*, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

IIT Mandi (H.P.) Date: Signature:

Dr. Viswanath Balakrishnan

PREAMBLE

Engineering the materials for storing energy is well explored in last decade which led the energy storage market at new heights and continued to play important role towards meeting future energy demands. However, certain aspects such as interfacial interaction between supercapacitor electrodes and electrolytes are not well explored for high surface area materials. Recently surface engineering of electrode gained considerable influence on energy storage performance. It is well known that surface and interfacial chemistry of electrode-electrolyte plays a pivotal role in energy storage and hence, understanding that aspect becomes quite important. Various approaches have been adopted to engineer the electrode surface, for example nanoparticles decoration, chemical functionalization, annealing, electro deposition, sputtering, and conformal coating using ALD etc. Nevertheless, how this surface engineering affects the wettability and their correlation with energy storage performance is not much explored and warrants detailed investigation.

The current doctoral thesis is mainly focused on surface engineering in the light of wettability aspect for supercapacitor performance. Different CVD grown/thermal oxidation based materials developed and their contact angle aspects have been explored using multiple approaches. In order to tune the wettability, electrolyte engineering, conformal coating of metal oxides, plasma treatment and hybrid approaches have been employed. In terms of device fabrication, symmetric and asymmetric configurations have been adopted. Detailed electrochemical measurements and analysis have been carried out and results are discussed in the light of above mentioned aspects. By adding small amount of organic solvent in aqueous electrolyte followed by few nm metal oxide coating on carbon nanotubes based electrode, 102 fold increase in energy density is achieved due to change in wettability. Similarly around 10 fold increase in specific capacitance is observed for plasma treated carbon nano fibers (CNF) with tuned wettability as compared to untreated CNF. Efforts are also made to develop large scale flexible electrodes with superior supercapacitor performances. Solid state devices have been fabricated which showed excellent cyclic stability with 87% capacitance retention after 25000 charge discharge cycles in case of iron oxide//CNT asymmetric supercapacitor device and 28% increase in capacitance after 10000 charge discharge cycles for CNF based symmetric supercapacitor device. The prototype demonstration in serially connected device geometry has been presented for practical applications such as glowing of different LEDs and rotation of miniature fans.

DEDICATION

Dedicated to lord "Radhe-Krishna", my father Shri Ashok Avasthi, my mother Smt. Santosh Devi, my brother Punit, my sister Seema, my nephews Shanu, Hanu, Nonu and my grandparents.

Acknowledgements

I would like to express my gratitude towards my supervisor Dr. Viswanath Balakrishnan for his consistent support, motivation and research discussions, without that, this journey would not have been completed. I also acknowledge my doctoral committee members for providing useful suggestions throughout my PhD tenure.

Thanks to IIT Mandi staff members for various supports and Advanced Materials Research Centre (AMRC) at IIT Mandi for providing characterization facilities. I also thank Department of Science and Technology (DST), government of India for providing financial support through DST-MES project.

I am thankful to my former mentors Dr. M. Saravanan, Dr. R. Krishnan and Dr. K. Prabakar who nurtured me for research and always believed in my capabilities.

I acknowledge Arjun Barwal for useful scientific discussions on electron microscopy.

I would like to thank and acknowledge Inakshi Verma who stood with me in good or bad times, supported me and always cared for me.

Last but not the least, a special thanks to Nitika Arya for fruitful scientific discussions, helping in my research by finding out my silly mistakes in my drafts and experiments, putting time and efforts in my thesis formatting. Moreover, motivating and caring for me always in my hard times during this long journey.