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Abstract 

 Carbon/Carbon (C/C) composites consist of carbon fibers and carbonaceous matrix as the main 

constituents. In these composites, the carbon fibers are oriented in different directions to achieve tailored 

properties. Two of such architectures are three-dimension hybrid (3DH) and four dimensions inplane 

(4DIN) C/C composites widely used in thermal protection systems in aerospace applications. These 

composites are very popular in the applications where the dimensional stability of structures is highly 

needed under severe thermo-mechanical loading conditions. Therefore, in the present study, these 

composites have been studied in detail using the image-based finite element method and two-scale 

asymptotic homogenization scheme. This includes some of the inherent geometrical imperfections 

directly in the finite element meshes and also accounts for the micro-structure hierarchy.    

First of all, the 2D images of these composites were reconstructed using an X-ray computed tomography 

facility. The inherent imperfections that are primely raised during the heat treatment procedure of 

fabrication were explored. The inherent imperfections were categorized as voids (Micro voids and big 

voids), cracks (intra-bundle, matrix, and interfacial), and bundle distortions. With the help of 2D images 

of microstructure, a three-dimensional (3D) model of these composites was reconstructed and discretized 

into finite element mesh. The resulting finite element model of realistic microstructure successfully 

included some of the inherent imperfections such as irregularly shaped big voids and bundle distortion 

directly. 

Further, two-scale asymptotic expansion homogenization was utilized under periodic boundary 

conditions to predict the effective thermo-mechanical properties such as effective thermal conductivity 

and effective thermal expansion coefficient. The Laser flash experiment was performed to measure the 

effective thermal conductivity of 3DH C/C composite in the in-plane direction up to 1000°C for the 

numerical model's validity. The measured TC is found in a very good agreement with predicted results 

that successfully validate the proposed IBFE model. The effect of interfacial debond was also 

incorporated in terms of effective thermal gap conductance that caused a decrease in the effective thermal 

conductivity of the composite. In the case of 3DH C/C composite, around 14.85% and 7.98 % 

reduction in the in-plane TC of the 3DH C/C composite was observed at 27°C and 1227°C 

respectively. However, the out-of-plane TC was reduced by 6.2 % and 2.8 % at the respective 

temperatures. On the other hand, TC was reduced by around 5% due to the imperfect interface for the 

full range of temperatures; thus, Interfacial debond shows a significant effect on the behavior of 3DH 
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C/C composite compared to 4DIN C/C composite. Further, it was observed that the local distribution 

of field variables (temperature and heat flux) is significantly affected due to the presence of imperfections.

Next, the effective thermal expansion coefficients (CTEs) of these composites were studied.  In the 

numerical predictions of effective CTEs of 4DIN C/C composite, the effect of the three interfacial 

conditions, namely i) perfectly bonded, ii) imperfectly bonded, and iii) completely debonded interface 

was included using surface-based cohesive behavior. The effective CTEs in x and z directions decreased 

significantly due to the imperfect interface, while opposite behavior was noticed for CTE in the y-

direction. For the validation of numerical findings, effective CTEs of 4DIN C/C composite were 

measured experimentally in the temperature range of 200-2500 °C. The in-plane CTE varied from 0.56 

to 2.66 x 10-6/°C. The predicted CTEs corresponding to the imperfect interface were found in very close 

proximity with experimental results. It was also found that interfacial damage initiates at around 247 °C 

with the corresponding strains of 0.008%, 0.06 %, and 0.009% in x, y, and z directions respectively. 

Finally, the thermal shock resistance (TSR) of 4DIN C/C composite was predicted in terms of critical 

laser power density as a function of laser beam diameter using the finite element-based simulation of laser 

pulse irradiation technique. The temperature dependency and anisotropic behavior of material were 

included in the analysis. A homogenous cylindrical body was assumed as a test specimen, and shear 

strength as a failure criterion. The yz-plane was predicted as a critical plane. The locations near the laser 

beam periphery around 1.5-2 mm below the irradiated surface were observed as the critical location for 

shear failure. Apart from this, the temperature and shear stress distribution at critical LPD values were 

studied in detail.  It was noticed that the TSR of 4DIN C/C composite is 10-18 times higher than that 

of 2D C/C composite. 

The presented study concludes that the IBFE method is an effective route to include the inherent 

imperfections realistically into the FE analysis. The microstructural imperfections such as voids, bundle 

distortion, and imperfectly bonded interfaces cause a significant reduction in effective thermo-mechanical 

properties of multidirectional C/C composites. 
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