Light Matter Interactions in Metal Chalcogenides Investigated By Optical Spectroscopy

A Thesis

submitted by

Juhi Pandey (Roll No. D14020)

for the award of the degree

of

Doctor of Philosophy

School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India

July 2020

Light Matter Interactions in Metal Chalcogenides Investigated By Optical Spectroscopy

A Thesis

submitted by

Juhi Pandey (Roll No. D14020)

for the award of the degree

of

Doctor of Philosophy

School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India

July 2020

Dedicated To My Parents

Declaration of Research Scholar

I hereby declare that the entire work embodied in this thesis entitled "Light Matter Interactions in Metal Chalcogenides Investigated By Optical Spectroscopy" is the result of investigations carried out by me in the School of Basics Sciences, Indian Institute of Technology Mandi, India, under the supervision of Dr. Ajay Soni, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on the finding of other investigators.

Place :- IIT Mandi

Signature

Date :- 23.07.2020

Name: Juhi Pandey

Declaration by the Research Advisor

I hereby certify that the entire work in the Thesis "Light Matter Interactions in Metal Chalcogenides Investigated By Optical Spectroscopy" has been carried out by Juhi Pandey under my supervision in the School of Basic Sciences, Indian Institute of Technology Mandi, and no part of it has been submitted elsewhere for any Degree or Diploma.

Name of the Guide: Dr. Ajay Soni

Date: 23.07.2020

Acknowledgments

I take this opportunity to expresses my gratitude to all those people who have supported in the successful completion of this doctoral thesis work at IIT Mandi. My tenure as a scholar is full of delightful memories of learning to approach several professional and personal challenges with a positive attitude. First, I would like to express my gratitude to my PhD supervisor, Dr. Ajay Soni for his persistence guidance and support throughout the duration to bring the best out of me. I owe my especial thanks to him for spending his precious time, motivational encouragements and giving freedom to plan and execute research work. Through him, I learnt about team work, proper utilization of available resources to perform high quality research. His everlasting passion and enthusiasm for research also taught not only me but all the group members about right attitude to solve scientific research problems. I feel fortunate that he gave me the opportunity to work with Raman and Photoluminescence spectroscopy to study vast variety of materials system relevant not only for the present thesis but also beyond the thesis.

I wish to thank my doctoral committee members Dr. Kaustav Mukherjee, Dr. Chandra Shekhar Yadav, Dr. Pradeep Kumar and Dr. Sudhir Kumar Pandey for their invaluable advices, discussions and support throughout the PhD tenure. I owe especial thanks to Dr. Chayan Kant Nandi for teaching a course on group theory which helped me to understand and analyse Raman data. I also thank the faculty members in the School of Basic Sciences for teaching me various interesting courses.

I express my sincere gratitude to Prof. Timothy Gonsalves, Director, IIT Mandi for providing all the facilities and funding to support the research work. I am also grateful to the IIT Mandi administration and AMRC staff members for administrative and academic support in my research journey. I am grateful to Prof. Arghya Taraphdar (IIT Kharagpur), Prof. Nikhil Koratkar (RPI, USA), Prof. Kanishka Biswas and Prof. Umesh Waghmare (JNCASR, Bangalore), Dr. Satinder Sharma and Dr. Viswanath Balakrishnan (IIT Mandi), Prof. Ramesh Chandra Mallik (IISC Bangalore), Dr. Dibyendu Dey (Arizona State University, USA), Dr. Tushar Gupta (RPI, USA), Mr. Debjit Ghoshal (RPI, USA) and Dr. Shriparna Mukherjee (IISC Bangalore) for the collaborative research work and valuable discussions. Special thanks are due for Dr. Surajit Saha from IISER Bhopal for providing his valuable support in technical discussion and clarification of various concepts.

My research life is full of positive and joyful experience because of my seniors, colleagues and friends. I wish to thank my research group members Dr. Somnath, Dr. Mohit, Dr. Surender and Dr. Mahesh, for technical discussions, motivation, and exchange of their experiences. I express my gratitude to friends Niraj, Ankit, Kewal, Divya, Kavita, Sheetal, Sonu, Shailja, Sonika, Gurpreet, Karan, Deepu, Ankita Mathur, Dr. Navneet and Dr. Pawan Kumar for their timely help on various aspects of the research work.

I take this opportunity to thank many of my friends Dr. Swati, Dr. Shaifu, Pratibha, Priyanka, Tulika, Shewta and Jagriti for providing friendly atmosphere and emotional support. I also wish to thank Mrs. Preeti Soni and Nitigya for their love and affection in giving me homely atmosphere as a family member away from home.

Finally, I express my heartfelt gratitude to my parents for standing-by me for all my decisions and providing me the best support and environment to chase my dreams at every stage of life. I am very much thankful to them for all the sacrifices they have made for my happiness. Further, I am also thankful to my grandmother, brother and sister-in law, aunts and uncles for their love, care and all kind of support whenever needed.

Preface

Recent technological advancements have opened up new directions for studying light matter interactions for energy harvesting through photovoltaics, light emitting diodes, phase change materials, optoelectronic and solar-thermoelectric devices in addition to probing numerous multi-body interactions for fundamental studies. The extent of light-matter interaction strongly depends upon several intrinsic properties of the material such as refractive index, polarizability, dielectric constant, susceptibility, absorption and extinction coefficient. With the development of nanoscience and nanotechnology, varieties of novel one-dimensional and twodimensional materials are designed to explore different possibilities of light matter interactions through enhanced surface to volume ratio and confinement effects. The interactions involving electron-electron, electron-phonon, plasmon-phonon, electron-hole and phonon-phonon interactions are established strongly upon the interplay of light with matter. The fundamental understandings of such multi-body phenomena are important to enrich the current scientific understanding for development of advanced technologies.

The family of transition metal chalcogenides, in this regard, is an ideal material system to explore these interesting phenomena owing to its rich library of physical properties such as metallic, semiconducting, superconducting, insulating nature. For technological advancements, the materials systems have been studied for applications like thermoelectricity, superconductivity, topological insulators, photovoltaics, phase change memory, nanoelectronics and optoelectronic devices. Most of the transition metal chalcogenides, such as MoS₂, WS₂, VSe₂, NbSe₂, TaSe₂, TiSe₂, are layered materials with a weak van der Waals interactions between the stacked layers, thus can be exfoliated as ultra-thin flakes of thickness down to single layer. The freedom of exfoliation from three-dimensional bulk material to two-dimensional sheets results in emergence of remarkably modified properties due to quantum confinement effect. For instance, bulk MoS₂, WS₂ and WSe₂ are indirect band gap materials whereas monolayer of these compounds possesses direct band gap properties. Further, different polytypes and polymorphs are also exhibited by such compounds. The electronic and optical properties of transition metal chalcogenides are also varied by the arrangement of atoms in the unit cell of the same compound. By employing top down and bottom up approaches of material synthesis, novel two-dimensional transition metal chalcogenides can be prepared for desirable physical

properties, on demand. Thus, transition metal chalcogenides are important material systems to explore their exotic physical properties.

Multi-body interactions in transition metal chalcogenides are strongly modulated by their structural arrangement, electronic band structure, dielectric screening, carrier concentration and Coulomb interactions. Semiconducting transition metal chalcogenides are among the few materials which have demonstrated to have exciton at room temperature owing to strong Coulomb interaction between electron and hole pair. Monolayer of MoS₂, WS₂ and WSe₂ exhibits neutral and charged excitons along with excitonic complexes depending upon the spinorbit splitting of the valence band, doping and substrate effect. Further, excitons also show their excited states which can be fundamentally understood from the analogy to the hydrogen atom model. Recently, excited states of exciton are being examined in several semiconducting transition metal chalcogenides by studying the dielectric screening effect, enhancement of spinorbit splitting through external magnetic field, modulation of carrier concentration through gated source-drain current measurements and by employing various sophisticated non-linear spectroscopic techniques. Excitonic transitions in these materials are important for studying many-body interactions, valleytronics and optoelectronics. In the current thesis, monolayer of MoS₂, exfoliated on SiO₂/Si substrate, is identified by simplistic optical contrast model and Raman spectroscopy. Neutral excitons such as A and B excitons along with negatively charged A⁻ trion is observed at room temperature in the photoluminescence spectra. Further, by using the temperature and laser power dependent photoluminescence study, the first excited state of A exciton (A_{2s}) is realized at cryogenic temperature (4 K) along with sulfur vacancy bound defect exciton and biexciton.

Another unique phenomenon of multi-body interaction that can be probed through lightmatter interaction is the formation of charge density wave in metallic systems, which has not been explored in literature, extensively. The major reason is high reflectivity of metallic systems, which limits the interactions to be observed by optical tools, especially for charge density wave. Generally, for one-dimensional system the driving mechanism of charge density wave is understood through Fermi surface nesting, however for the case of higher dimensional systems, the involvement of electron-phonon coupling is also being considered. Several quasi twodimensional transition metal chalcogenides such as 2H-NbSe₂, 1T-TaSe₂, 1T-VSe₂, 2H-TaSe₂ shows the formation of charge density wave at low temperature. Interestingly, the involvement of electron-phonon coupling can be probed through Raman spectroscopy and aid in the fundamental understanding of charge density wave phenomena. In the above context, the emergence of incommensurate and commensurate charge density wave in 1T-VSe₂ is studied in the present thesis by using temperature dependent Raman spectroscopy. The manifestation of electron-phonon interaction is estimated in the variation of Raman signal intensity with charge density wave formation at low temperatures.

The current era of research demands for ferroelectric semiconductor to achieve high photovoltaic conversion efficiency through intrinsic charge separation via inherent polarization. Various transition metal oxide-perovskite and organic-inorganic halide-perovskites are ferroelectric in nature, but with the high band gap of oxides while instability of organic-inorganic halides limit their application as photovoltaic. Thus, a system of novel transition metal chalcogenides perovskite has been investigated, theoretically and experimentally, as an alternative photovoltaic material, which are environmentally stable, non-toxic, direct band gap materials with intrinsic ferroelectric polarization. To address the challenge of ferroelectric semiconductor, we have grown a thin film of anti-ferroelectric polycrystalline BaZrS₃ and studied the physical properties with optical spectroscopy. Thin film has showed a localized ferroelectric polarization, below 100 K, in the Raman spectroscopy owing to the loss of inversion symmetry via localized oxygen impurities. Interestingly BaZrS₃ is a non-toxic and environmentally stable material with optimum band gap ranging from 1.7 to 1.85 eV, thus the localized ferroelectric polarization hosts BaZrS₃ thin film as a potential ferroelectric polarization.

The present thesis also addresses other important aspects of light matter interaction in chalcogenide materials for thermoelectric applications. For this, the optical properties of superionic copper telluride is studied in detail. Copper telluride is a p-type semiconductor with carrier concentration $\sim 10^{22}$ cm⁻³, emerging as a potential material for thermoelectricity, photovoltaic, photonics and plasmonic devices. The materials system belongs to the class of phonon-liquid-electron-crystal because the cation is loosely bonded with the rigid sub-lattice of tellurium. A precise understanding of the vibrational and optical properties of such system is challenging due to non-stoichiometry and complex crystal structure which thus, limits the

development of smart devices using copper telluride. Therefore, in this work, structural phases, structural transitions, vibrational properties as well as strong plasmon-phonon coupling with carrier concentration is studied via temperature dependent Raman spectroscopy. Thermal conductivity of different stoichiometric compounds is determined by estimation of phonon lifetime for thermoelectric application.

In summary, the present thesis elaborates on the exploration of less understood multibody interactions such as (i) excitonic complexes and excitonic excited states in noncentrosymmetric direct band gap monolayer MoS_2 ; (ii) charge density wave in metallic 1T-VSe₂; (iii) emergence of local ferroelectricity in anti-ferroelectric direct band gap semiconducting BaZrS₃ thin film; and (iv) plasmon-phonon coupling and vibrational properties of copper telluride. A brief summary of all the chapters of the thesis are elaborated in the following section.

The present thesis is divided into eight chapters. The brief outline of the chapters is discussed below:

Chapter 1: Introduction

This chapter contains the background of the research problem, thesis objectives and a brief description of physical properties such as structure, electronic, vibrational properties of typical transition metal chalcogenides material systems investigated in the thesis.

Chapter 2: Experimental Techniques

The chapter describes about several techniques used in the present thesis to synthesize and characterize transition metal chalcogenides. For instance, chemical vapor transport to grow single crystalline bulk VSe₂ and chemical vapor deposition to prepare BaZrS₃ thin film are discussed. Mechanical exfoliation method to achieve two-dimensional sheets down to monolayer from bulk MoS₂ is described. Characterization techniques, such as X-ray diffraction, field emission scanning electron microscopy, UV-visible absorbance spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, physical property measurement system and magnetic property measurement system are employed to assess the crystal quality, composition, surface morphology, structural, optical, vibrational, electronic and magnetic properties, are presented.

Chapter 3: Optical Methods for Thickness Identification of Atomically Thin 2D Layers over Substrate

Prior to the investigation of physical properties of two-dimensional materials, the key challenge is the visibility and determination of thickness of nanosheets grown/transferred over desired substrate. Optical microscopy is commonly employed for visualization and identification of two-dimensional sheets by perceiving optical contrast between nanosheets of different thickness and the substrate upon illumination with incident light. The chapter describes about theoretical calculation of optical contrast based on Fresnel equations for flakes of several layered transition metal chalcogenides such as MoS₂, WS₂, WSe₂ and NbSe₂ to achieve maximum visibility for monolayer deposited over SiO₂/Si substrate. Two different methods namely Weber contrast and Michelson contrast are compared with the experimentally estimated contrast values for graphene monolayer over SiO₂/Si substrate to determine the best theoretical method. Weber contrast provided better theoretical estimation of optical contrast and suggested that ~ 90 nm as well as ~ 285 ± 5 nm thick SiO₂ layer over Si substrate gives maximum optical contrast upon illumination with light of wavelength ranging from 500 – 700 nm for MoS₂, WS₂, WSe₂ and NbSe₂.

Chapter 4: Excitonic Complexes and Excited States in Monolayer MoS₂

The fourth chapter provides an experimental investigation of excitons, complexes of excitons such as trion, biexciton and defect bound exciton along with the observation of first excited state of A exciton (A_{2s}) in monolayer MoS₂ mechanically exfoliated over SiO₂(290 nm)/Si substrate. Temperature dependent micro-Photoluminescence spectroscopy from 4 K to 300 K and laser power dependent photoluminescence at 4 K is used to determine the origin of several optical transitions. The study suggest that the defect bound excitons are observed at low temperature due to low binding energy however free excitons, trion and biexciton can exist up to 300 K because of binding energy higher than thermal energy. Further, unlike several reports where Rydberg states on A exciton of monolayer MoS₂, WS₂ and WSe₂ is observed using several sophisticated non-linear optical techniques, we present the our observation of A_{2s} state for monolayer MoS₂ using photoluminescence spectroscopy at 4 K.

Chapter 5: Charge Density Wave in Single Crystalline VSe₂

Charge density wave is a low temperature ordered phase arising due to periodic modulation of conduction electron density accompanied by structural modulation. The phenomenon is realized in two-dimensional metallic layered transition metal chalcogenides such as 1T-TaSe₂, 1T-TiSe₂, 2H-NbSe₂. Generally, charge density wave is understood in the perspective of Fermi surface nesting where periodic modulation of conduction electron opens up a gap at Fermi level. However, several recent studies suggest that Fermi surface nesting is insufficient to understand charge density wave phenomenon especially for two and higher dimensions. It has been observed that electron-phonon coupling and Fermi surface nesting together can provide a better understanding for the mechanism of charge density wave. 1T-VSe₂ is an interesting material which undergoes incommensurate and commensurate charge density wave below 110 K. The present chapter demonstrates the involvement of electron-phonon coupling with incommensurate and commensurate charge density wave transitions in 1T-VSe₂ using temperature dependent Raman study from 300 K to 10 K.

Chapter 6: Emergence of Localized Polarization in Anti-ferroelectric BaZrS₃ Thin Film

This chapter discusses on the observation of localized ferroelectric polarization in chemical vapor deposition grown BaZrS₃ film through temperature dependent Raman study and supported by first principles calculations. The presence of localized ferroelectric phases is understood by the anomalous behavior of Raman modes in temperature dependent Raman study. Localized oxygen impurities break the center of inversion symmetry of ZrS₆ octahedra of BaZrS₃ and thus develop ferroelectric polarization. Existence of rotational mode of ZrS₆ octahedra with temperature and phonon band structure calculations suggested the stability of *Pnma* crystal structure of BaZrS₃. Electronic band structure calculations and optical spectroscopic studies showed that oxygen impurities did not modulate the nature and the band gap of BaZrS₃. Thus, localized ferroelectric polarization provides intrinsic charge separation that can enhance the efficiency of photovoltaic materials.

Chapter 7: Plasmon-Phonon Coupling and Vibrational Properties of Cu_{2-x}Te Thermoelectric Material

The chapter summarizes the investigations on optical and vibrational properties of $Cu_{2-x}Te$ as *p*-type thermoelectric material. The interesting compound belongs to the class of Phonon-Liquid-Electron-Crystal of thermoelectric materials which provides a new pathway of achieving ultra-low thermal conductivity due to loosely bounded metal cation in the rigid sub-lattice of chalcogens. Due to the complex crystal structure, presence of polymorphic phases and various structural transitions vibrational properties of $Cu_{2-x}Te$ compounds are not well understood yet. In this chapter, vibrational properties and plasmon-phonon coupling with carrier concentration have been studied for $Cu_{1.25}Te$, $Cu_{1.6}Te$, and Cu_2Te using temperature and laser power dependent Raman studies in the temperature range of 300-773 K. Thermal conductivity of the three compounds are qualitatively estimated from phonon lifetime estimation through Raman spectroscopy.

Chapter 8: Conclusions and Future Scope

This chapter briefly summarizes the major highlights and outcomes of the thesis with the proposal for further studies and scope for future directions in the field.

Appendix 1: Matlab Simulation Codes for Optical Contrast Calculations

In appendix-1, the Matlab programming codes used to simulate optical contrast calculations for visibility of the transition metal dichalcogenides thin layers on SiO_2/Si substrate are documented. With the help of literature and understanding of the optical contrast, the codes have been written for Michelson and Weber contrast for thin film thickness identification. By taking example of graphene, the simulations helped in identifying the most appropriate thickness of SiO_2 layer on degenerately doped silicon substrates for specific wavelength of incident light using research grade microscope.

Table of Contents

I.	Declaration Certificates	i
II.	Acknowledgments	V
III.	Prefacei	X
IV.	Table of Contentsxv	ii
V.	List of Figuresxx	i
VI.	List of Tables xi	X

Chapter 1: Introduction	1
1.1 Background of the research problem	2
1.2 Thesis objective	6
1.3 Introduction to the material systems	7
1.3.1 Layered transitions metal dichalcogenides	7
1.3.1(a) Molybdenum Di-Sulfide (2H-MoS ₂)	8
1.3.1(b) Charge density wave and 1T-VSe ₂	17
1.3.2 Transition metal chalcogenides perovskite: BaZrS ₃	20
1.3.3 Copper Telluride	24
1.4 Summary	29
References	30

Chapter 2: Experimental Techniques 3	37
2.1 Introduction	38
2.2 Sample preparation techniques	38
2.2.1 Chemical vapor transport	39
2.2.2 Melt grown method	41
2.2.3 Chemical vapor deposition	42
2.2.4 Mechanical exfoliation	43
2.3 Characterization techniques	44

2.3.1 X-Ray diffraction and Rietveld Refinement	45
2.3.2 Field emission scanning electron microscopy	46
2.3.3 Ultraviolet-visible absorbance spectroscopy	47
2.3.4 Raman spectroscopy	49
2.3.5 Photoluminescence spectroscopy	55
2.3.6 Physical properties measurement System	58
2.3.7 Magnetic properties Measurement System	59
2.5 Summary	60
References	62

3.1 Introduction	66
3.2 Theoretical calculation of optical contrast using Fresnel equations	67
3.3 Estimation of optical contrast for graphene and comparison with earlier report	70
3.4 Comparison between Weber contrast and Michelson contrast	71
3.5 Optical contrast calculation for various TMDCs flakes placed over SiO ₂ /Si substrate	73
3.6 Optical contrast calculation for MoS ₂ with thickness varying from ML to bulk	75
3.6.1 Experimental calculation of optical contrast for varying thickness of MoS ₂	77
3.7 Summary	79
References	81

Chapter 4: Excitonic Complexes and Excited States in Monolayer MoS ₂ 83	5
4.1 Introduction	ł
4.2 Materials and Methods	;
4.3 Results and discussions)
4.3.1 Identification of ML MoS ₂ on SiO ₂ /Si substrate	
4.3.2 Temperature dependent PL and optical transitions	1
4.3.3 Power dependent PL and origin of optical transitions	l
4.3.4 Excited state of A exciton	5

4.3.5 Revised energy level diagram at 300 K	98
4.4 Summary	99
References	100

Chapter 5: Charge Density Wave in Single Crystalline VSe ₂	103
5.1 Introduction	104
5.2 Materials and methods	105
5.3 Results and discussions	106
5.3.1 Structural characterizations	. 106
5.3.2 Resistance measurement	108
5.3.3 Magnetic measurement	. 110
5.3.4 Raman spectroscopic measurement	. 112
5.4 Summary	118
References	. 119

Chapter 7: Plasmon-Phonon Coupling and Vibrational Properties of Cu _{2-x} Te Thermoelectric Material145	
7.1 Introduction	
7.2 Materials and methods148	
7.3 Result and discussion	
7.3.1 Characterization of crystal structure and elemental composition	
7.3.2 Thermodynamical stability of phases of Cu _{2-x} Te compounds 149	
7.3.3 Vibrational properties of Cu_{2-x} Te compounds at room temperature	
7.3.4 Temperature dependent vibrational properties of Cu _{2-x} Te compounds 154	
7.3.5 Phonon lifetime and thermal conductivity of Cu_{2-x} Te compounds 157	'
7.4 Summary 158	
References 159)

Chapter 8: Conclusions and Future Scope 16	53
8.1 Overall conclusion of the thesis work 10	64
8.2 Future directions and scope for further work 10	69

11			Simulation			1	
A1.1 Matlab P	rogran	nming using	Weber contrast fo	r ML MoS ₂	•••••	••••••	174
A1.2 Matlab P	rogran	nming using `	Weber contrast at	varying lay	er thick	ness of MoS ₂ .	177

Publication List
