Energy and Electron Transfer as Probe of the Interfacial Interaction between Quantum Dot and Organic Molecule

A Thesis

submitted by

Pushpendra Kumar (Roll No. D10004)

for the award of the degree

of

Doctor of Philosophy

School of Basic Sciences

Indian Institute of Technology Mandi

Kamand, Himachal Pradesh - 175005, India

June, 2016

Dedicated to

My Loving Parents

&

Younger Sister and Brother

Acknowledgements

Through this short acknowledgement, I wish to warmly thank to all people who have contributed to the successful completion of this work and who have encouraged me continuously and provided me continuous support, guidance and motivation in each and every situation. I might have forgotten some people for that I sincerely apologize.

First of all, I would like to express my deep gratitude to my advisor Dr. Suman Kalyan Pal for providing me an opportunity to work with him and his continuous motivation encouragement, guidance and endless support. I acknowledge the guidance and suggestion provided by the members of my DC committee.

I would like to sincerely thank to my teacher, Mr. Mahendra Kumar who helped me in understanding of science and encouraged me for research.

I would like to thank Dr. Torbjörn Pascher of Department of Chemical Physics, Lund University, Lund, Sweden, for helping me with data analysis in the Matlab. Thanks to Dr. S. Mitra and Mrs. S. Phukan, Department of Chemistry, North-Eastern Hill University Shillong, Shillong and Dr. S. Mukhopadhyay and Mr. Dominic Narang of IISER Mohali for helping me in TCSPC measurements.

I express my sincere thanks to Prof. T. A. Gonsalves, the Director, IIT Mandi for his support and encouragement. The research facility at Advanced Materials Research Center (AMRC), IIT Mandi is gratefully acknowledged.

It was a great experience to work with Dr. Subrata Ghosh and Mr. Sunil Kumar. My thanks to Dr. Pradyumna Kumar Pathak, Dr. Hari Verma, Dr. Prasanth P. Jose, Dr. Bindu Radhamany and Dr. Chayan Kanti Nandi for their valuable advices during course work.

I would like to thank my group members Himadri Chakraborti, Abdus Salam Sarkar, Ashwin Thakur, Supriya Ghosh, Nagaraju Nakka, Amir Mustaq and Rajeev Ray for making research discussion in group meetings at every weekend interesting and maintaining nice working environment. It was fantastic to share times with Vimal Kumar Pathak and Supriya Ghosh at the Kamand campus.

My special thanks to Jai Prakash, Lakshman, Sougata, Abhishek, Sunil Dutt, Sindhu, Anna, Navneet, Vivek Mishra, Dr. Charu, Pooja, Syamantak, Pankaj, Manisha, Abhishek Gupta, Jitendra, Rajiv, Jalim, Sohan, Manoj, Ashish, Prateep, Dr. Rajesh, Reena, Tripti, Shilpa, Rambabu, Guru, Lingeswar Reddy, Raj kumar, Gourav, Abhishek Gupta, Sujeet, Navneet, Vishal, Muninder and all AMRC staff for their support and encouragement.

Most importantly, I offer my deepest gratitude from the bottom of my heart to all my family members and relatives for their patience love and care. I extremely acknowledge my special friend Archna for her inspiration and motivation. Without them this work would never have come into existence.

School of Basic Sciences

(Pushpendra Kumar)

Indian Institute of Technology Mandi

Kamand, Himachal Pradesh - 175005, India

LIST OF PUBLICATIONS

- Pushpendra Kumar and Suman Kalyan Pal; Role of decoupled defect transitions of ZnO nanocrystals in energy transfer. J. Photochem. Photobiol., A 2014, 278, 46–52.
- Pushpendra Kumar and Suman Kalyan Pal; Global analysis of quenching of the time-resolved emission of ZnO nanocrystals by adsorbed Rhodamine B on the basis of Tachiya theory. J. Photochem. Photobiol., A 2015, 296, 35–39.
- Pushpendra Kumar and Suman Kalyan Pal; Ab Initio Assessment of the Structural and Optoelectronic Properties of Organic-ZnO Nanoclusters. J. Phys. Chem. A, 2015, 119 (39), 10067–10075.
- Sunil Kumar, Punita Singh, Pushpendra Kumar, Ritu Srivastava, Suman Kalyan Pal and Subrata Ghosh; Exploring Emissive Charge Transfer Process in Zero-Twist Donor–Acceptor Molecular Design as Dual State Emitter. J. Phys. Chem. C, 2016, 120 (23), 12723–12733.
- Pushpendra Kumar, Sunil Kumar, Subrata Ghosh and Suman Kalyan Pal; Direct Electron Injection in Dye Anchored Quantum Dots following Charge Transfer Excitation: Femtosecond and Density Functional Insights. *Phys. Chem. Chem. Phys.* (Accepted).
- Pushpendra Kumar and Suman Kalyan Pal; Ultrafast Multiexponential Electron Injection Dynamics at dye and ZnO QD Interface: A Combined Spectroscopic and First Principles Study. *Chem. Phys. Chem. (Under review)*
- 7. Suprya Ghosh, Mihir Ghosh, **Pushpendra Kumar**, Abdus Salam Sarkar and Suman Kalyan Pal; Auger-assisted hole transfer from ZnO to CdS quantum dot and implication for electrical transport. *J. Phys. Chem. C (submitted)*

Table of Contents

1. General Introduction	1
1.1. Photophysical Processes in Unimolecular System	3
1.1.1. Absorption	. 5
1.1.2. Emission	. 6
1.2. Photophysical Processes in Bimolecular System	7
1.2.1. Quenching Mechanism	. 8
1.2.2. Photoinduced Electron Transfer	9
1.2.2.1. Photoinduced Intramolecular Electron Transfer	9
1.2.2.2. Photoinduced Intermolecular Electron Transfer	10
1.2.3. Fluorescence Resonance Energy Transfer (FRET)	13
1.3. Semiconductor Nanostructures	16
1.3.1 Size Matters	16
1.3.2. Nanostructures	18
1.3.3. Zinc Oxide Nanoparticles	21
1.4. Importance of this Thesis in the Context of Current Status of the Research on	
Interfacial Interaction between Quantum Dot and Organic Molecule	23
1.5. Scope of the Thesis	26
References	28
2. Experimental Techniques and Computational Methods	36
2.1. Introduction	36
2.2. Experimental Techniques	36

2.2.1. Steady State Spectroscopic Methods	36
2.2.1.1. Absorption Measurements	36
2.2.1.2. Fluorescence Measurements	39
2.2.1.3. Excitation Spectra	41
2.2.1.4. Fluorescence Quantum yield	42
2.2.2. Time-resolved Spectroscopic Methods	42
2.2.2.1. Time-resolved Fluorescence Spectroscopy	43
2.2.2.2. Transient Absorption Spectroscopy	45
2.2.3. Transmission Electron Microscopy	49
2.3. Synthesis of ZnO QDs	51
2.4. Computational Methods	52
2.4.1. Molecular Mechanics	. 53
2.4.2. Semi-emperical Methods	53
2.4.3. Ab Initio Methods	53
References	55
3. Role of Decoupled Defect Transitions of ZnO QDs in Energy Transfer	58
3.1. Abstract	58
3.2. Introduction	58
3.3. Materials	60
3.4. Results	60

3.4.1. Analysis of Steady State Measurements	60
3.4.2. Analysis of Time-Resolved Fluorescence Measurements	66
3.5. Discussion	69
3.6. Conclusions	. 72
References	72
4. Global Analysis of Quenching of the Time-resolved Emission of ZnO QDs by	
Adsorbed Rhodamine B on the basis of Tachiya Theory	76
4.1. Abstract	76
4.2. Introduction	76
4.3. Materials and Methods	78
4.4. Results and Discussion	79
4.4.1. Steady-State and Time-resolved Measurement	. 79
4.4.2. Analysis of Fluorescence Kinetics	81
4.5. Conclusions	87
References	88
5. Ab Initio Assessment of the Structural and Optoelectronic Properties of Organic-	
ZnO Nanoclusters	91
5.1. Abstract	91
5.2. Introduction	91

5.3. Computational Details	94
5.4. Results and Discussion	95
5.4.1. BC5 Dye	95
5.4.2. Zinc Oxide Nanoclusters	98
5.4.3. Alignment of Energy Levels and Electron Transfer 10	02
5.4.4. Adsorption of BC5 on ZnO Nanoclusters 10	04
5.4.5. Optical Properties of Adsorbed BC5 on ZnO Nanoclusters	07
5.5. Conclusions 11	11
References	11
6. Femtosecond Insights into Direct Electron Injection in Dye Anchored ZnO QDs	
	16
following Charge Transfer Excitation 11	16
following Charge Transfer Excitation 11 6.1. Abstract	16 17
following Charge Transfer Excitation 11 6.1. Abstract. 11 6.2. Introduction. 11	16 17 19
following Charge Transfer Excitation 11 6.1. Abstract. 11 6.2. Introduction. 11 6.3. Materials 11	16 17 19 19
following Charge Transfer Excitation 11 6.1. Abstract. 11 6.2. Introduction. 11 6.3. Materials 11 6.4. Results and Discussion. 11	16 17 19 19 19
following Charge Transfer Excitation 11 6.1. Abstract. 11 6.2. Introduction. 11 6.3. Materials 11 6.4. Results and Discussion. 11 6.4.1. Adsorption of Dye on QDs and Formation of Charge Transfer Complex 11	16 17 19 19 19 22

6.5. Conclusions	135
References	136
7. Ultrafast Multiexponential Electron Injection Dynamics at dye and ZnO QD	
Interface: A Combined Spectroscopic and First Principles Study	141
7.1. Abstract	141
7.2. Introduction	141
7.3. Materials	144
7.4. Results and Discussion	145
7.4.1. Ground State Properties and Absorption Spectra	145
7.4.2. Excited State Properties and Emission Spectra	148
7.4.3. Time-resolved Fluorescence Dynamics	150
7.4.4. Femtosecond TA Studies	152
7.4.5. Thermodynamics of Electron Transfer	156
7.4.6. Theoretical Insights	158
7.5. Conclusions	160
References	161
8. Concussions on My Recent Work on Interfacial Interaction between QD and Orga	anic
Molecule	166
References	169