Anisotropic Gold Nanoparticles for Sensors, Protein Conformation Studies and Sustained Drug Release

A Thesis

Submitted

by

Abhishek Chaudhary

(Roll No: D10012)

for the award of the degree of

Doctor of Philosophy

School of Basic Sciences Indian Institute of Technology Mandi Mandi, Himachal Pradesh-175005 February, 2016

DEDICATED TO

My beloved Parents

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this Thesis is the result of investigations carried out by me in the (*School of Basic Sciences*), Indian Institute of Technology Mandi, under the supervision of (*Dr. Chayan Kanti Nandi*), and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place:

Date:

Signature:

Name:

Thesis Certificate

This is to certify that the thesis entitled "Anisotropic Gold Nanoparticle for Sensor, Protein Conformation studies and Sustained Drug Release" submitted by Mr. Abhishek Chaudhary to the Indian Institute of Technology, Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma. In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

Acknowledgements

The work presented in this thesis would not have been possible without my close association with many people who were always there when I needed them the most. I take this opportunity to acknowledge them and extend my sincere gratitude for helping me make this Ph.D. thesis a possibility.

First of all, I would like to express my deep gratitude and profound indebtedness to my PhD advisor Dr. Chayan Kanti Nandi for his dexterous guidance, invaluable suggestions and perceptive enthusiasm which enabled me to accomplish the task of undertaking the present study. He sets an example of a world-class researcher for his passion on research. His wide knowledge and logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance provided me a good basis for the present thesis.

I express my sincere thanks to The Director, IIT Mandi for his support and encouragement. The research facility at Advanced Materials Research Center (AMRC), IIT Mandi is also gratefully acknowledged hereby.

I also like to express my deep gratitude to my D.C committee members, Dr. Subrata Gosh, Dr. P.C. Ravi kumar, Dr. Suman Kalayan Pal, and Dr. Bharat Singh Rajpurohit for their invaluable advice and encouragement during research work.

My sincere thanks to all chemistry faculty members for their invaluable advice and encouragement during course work as well as research work.

I am also very much thankful to my research group members (Dr. Charu Dwivedi, Abhishek Gupta, Syamantak Khan, Navneet Chandra Verma, Shivani Mishra) for their invaluable support and help during my research work.

I would like to thanks to all my friends for their continuous support and encouragement.

My earnest thanks are due to AMRC staff for their assistance in lab.

I express profound sense of reverence to my parents for their untiring support and co-operation.

i

I can never forget cooperation, endless tolerance and constant encouragement from all my family members during this tough and happy moments of the journey.

Above all, all the praise is due to the Almighty God, the ultimate source of knowledge, a part of which He reveals to man and peace be upon all his Messengers throughout the world for success and guidance of mankind. I express my gratitude and indebtedness to the Almighty for countless blessings.

Abbreviations

GNP	Gold nanoparticle	
GNR	Gold nanorod	
SPR	Surface Plasmon Resonance	
СТАВ	Cetyltrimethylammonium Bromide	
CTAC	Cetyltrimethylammonium Chloride	
DTT	Dithiothritol	
PEDOT:PSS	Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate	
GOx	Glucose Oxidase	
BSA	Bovine Serum Albumin	
HSA	Human Serum Albumin	
FBS	Fetal Bovine Serum	
Lys	Lysine	
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide	
EPR	Enhanced Permeability and Retention	
EPA	Environmental Protection Agency	
DL	Detection Limit	
IC ₅₀	Half Maximal Inhibitory Concentration	
μΜ	Micromolar	
nM	Nanomolar	
TEM	Transmission Electron Microscopy	
SEM	Scanning Electron Microscopy	
XRD	X-ray powder diffraction	
DLS	Dynamic Light Scattering	

CD	Circular Dichroism
TRFS	Time Resolved Fluorescence Spectroscopy
UV-vis	Ultraviolet-Visible spectroscopy
UV-vis-NIR	Ultraviolet-Visible-Near-infrared Spectroscopy
HRMS	High Resolution Mass Spectroscopy
FTIR	Fourier Transform Infrared Spectroscopy

Table of Contents

Acknowledgements	i
Abbreviation	vii
Abstract	ix

Chapter 1: Introduction

1.1Introduction	2
1.2 Background of the Thesis	3
1.3 Application of Nanoparticles	4
1.3.1 Application of Nanoparticle in Sensing	5
1.3.2 Anisotropic GNP in Protein Nanoparticle Interaction	9
1.3.3 Application of Nanoparticle in Drug Delivery System	10
1.3.3.1 Challenges in Nanoparticle Associated Drug Delivery System	12
1.4 Structure and Organization of the Thesis	14
1.5References	16
Chapter 2: Synthesis Methods & Characterization Technique	
2.1Introduction	21
2.2 Materials	21
2.3 Synthesis of Nanoparticles	22
2.3.1 Synthesis of CTAB Stabilized Anisotropic Nanoparticles	22
2.3.2 Synthesis of CTAC Stabilized Anisotropic Nanoparticles	23
2.3.3 Synthesis of CTAB Stabilized Gold Nanorod	23
2.3.4 Synthesis of CTAB Stabilized Spherical Gold nanoparticle	23
2.3.5 Surface Modification of CTAB Stabilized Anisotropic GNP	24
2.3.6 Synthesis of Citrate Stabilized Spherical Gold Nanoparticles	26
2.3.7 Synthesis of DOx-GNP Conjugate	26
2.3.8 Synthesis of N-Ethyl Derivative of DOx	27
2.4 In-Vitro Drug Release	28
2.5 Cell Culture	29
2.5.1 Cytotoxicity Assay	29
2.6 Analytical Technique	29
2.6.1 Transmission Electron Microscopy	29
2.6.2 Scanning Electron Microscopy	30
2.6.3 X-ray Powder Differection	31
2.6.4 Dynamic Light Scattering	31

2.6.5 Ultraviolet-Visible Spectroscopy	32
2.6.6 Steady State Fluorescence	33
2.6.7 Time Resolved Fluorescence Spectroscopy	34
2.6.8 Circular Dichroism Spectroscopy	35
2.6.9 Fourier Transform Infrared Spectroscopy	36
2.7 Computer Simulations	37
2.7.1 Surface Modification of GNP	37
2.7.2 Docking Experiment	37
2.8 References	39

Chapter 3: Anisotropic Gold Nanoparticle for Heavy Metal Ions Detection

3.1 Introduction	43
Part A: Ultrasensitive Detection of Hg ²⁺ using CTAC Stabilized Anisotropic GNP	
3A.2 Sample Preparation for Hg ²⁺ Detection	46
3A.3 Results and Discussion	47
Part B: Pb ²⁺ Detection using CTAB Stabilized Anisotropic GNP.	
3B.2 Surface Modification of the Gold Nanoparticles with DTT for Pb ²⁺ Detection	60
3B.3 Results and Discussion	60
3.2 Conclusion	72
3.3 References	73

Chapter 4: Anisotropic Gold Nanoparticles for the Highly Sensitive Colorimetric Detection of Glucose in Human Urine.

4.1 Introduction	77
4.2 Results and Discussion	79
4.3 Conclusion	90
4.4 References	91

Chapter 5: Morphological Effect of Gold Nanoparticles on the Adsorption of Bovine Serum Albumin.

5.1Introduction	95
5.2 Result and Discussion	98
5.2.1 Steady State Fluorescence Changes in the Protein Local Microenvironment	100
5.2.2 Time Resolved Fluorescence on BSA–GNP Conjugates	104
5.2.3 Red-edge Excitation Shift	105

5.2.4 Structural Stability of GNP-Protein Conjugates	107
5.2.5 Agglomeration of Protein–Nanoparticles Conjugates	109
5.2.6 Circular Dichroism Spectroscopy on Secondary Structural Changes	112
5.2.7 FTIR spectra of BSA-Nanoparticles Conjugate Systems	114
5.2.8 Theoretical Simulation: a Hypothesized Model on Protein–GNP Binding	115
5.3 Conclusion	119
5.4 References	120

Chapter 6: One Pot Synthesis of Doxorubicin Loaded Gold Nanoparticles for Sustained Drug Release.

6.1 Introduction	124
6.2 Results and Discussion	126
6.3 Conclusion	138
6.4 References	139
Future Studies:	141

List of Publications	142
	142

Anisotropic Gold Nanoparticle for Sensor, Protein Conformation studies and Sustained Drug Release

Abhishek Chaudhary, Indian Institute of Technology Mandi, HP-175001

Abstract:

Anisotropic gold nanoparticle (GNP), because of the presence of different surface energies that arise from large fractions of edges, corners and vertices, has become increasingly important for various applications in the field of chemistry, physics, biology and material sciences. The focus of the present research work is mainly concerned with the use of anisotropic gold nanoparticles (GNP) for ultrasensitive detection of toxic heavy metal ions and small biomolecules and understanding the conformational changes of proteins while adsorbed onto the GNP surface to prevent several misfolding diseases. It has further been extended to a novel synthetic approach for ease drug loading and its delivery where the drug molecule directly loaded onto the synthesized GNP without using multistep surface functionalization processes. We have shown that the specific surface functionalization along with the anisotropic nature of GNP can enhance the sensing ability dramatically compared to spherical GNP.