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Abstract

In thesis, we address some issues in classification of varying length patterns
of speech and scene images represented as sets of continuous valued feature
vectors using kernel methods. Kernels designed for varying length patterns
are called as dynamic kernels. This thesis considers the matching based ap-
proaches for designing dynamic kernels.

The thesis first proposes the example-specific density based matching ker-
nel (ESDMK) based support vector machine (SVM) classifier for varying
length patterns. The proposed kernel is computed between a pair of ex-
amples, represented as sets of feature vectors, by matching the estimates
of the example-specific densities computed at every feature vector in those
two examples. The number of feature vectors of an example among the
k nearest neighbors of a feature vector is considered as an estimate of the
example-specific density. The minimum of the estimates of two example-
specific densities, one for each example, at a feature vector is considered as
the matching score. The ESDMK is then computed as the sum of the match-
ing score computed at every feature vector in a pair of examples. The main
issue in building the proposed kernel is choice of k, the number of neigh-
bors. This thesis proposes to combine all the matchings obtained using the
different values of k£ to compute pyramid match ESDMK. We propose to
compute pyramid match ESDMK as the weighted sum of matches obtained
by computing the ESDMKs at sequence of increasingly coarser neighbors.
The proposed ESDMKs does not include spatial information in the images
which is important for better matching of images. We propose the spatial
ESDMK (SESDMK) to include the spatial information. We consider a fixed
number of spatial regions in every scene image. An ESDMK for the local
feature vectors in a particular region from the two examples is constructed.
Then, the SESDMK is constructed as a combination of ESDMKs of all the
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regions. The performance of the SVM-based classifiers using the proposed
family of ESDMKSs for sets of local feature vectors extracted from images
and long duration speech is studied for scene classification, speech emotion
recognition and speaker identification tasks and compared with that of the
SVM-based classifiers using the state-of-the-art dynamic kernels.

Keywords: Varying length patterns, scene images, long duration speech,
set of local feature vectors, support vector machine, dynamic kernels, example-
specific density based matching kernel, scene classification, speech emotion
recognition, speaker identification
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Chapter 1

Introduction

An important component in the classification task using support vector ma-
chines (SVM) is the computation of inner product operation [1]. When classes
are non-linearly separable inner product operation is typically computed in
high dimensional space. Evaluation of inner product in a high dimensional
space is avoided by using an inner product kernel, K(x,,,x,), defined as
K(Xpm,X,) = ®(x,,)7®(x,) [2]. Here ®(x,,) and ®(x,) are the high di-
mensional feature vectors representation of the pair of examples x,, and x,
respectively. The commonly used kernels such as Gaussian kernel, poly-
nomial kernel etc., are computed between the two examples represented in
fixed dimensional space. Such kernels are called static kernels. However, the
data such as images in which features are extracted from local homogeneous
regions and speech are represented as varying length sets of local feature
vectors. The focus of this work is on classification of varying length patterns
of images and speech. The kernels computed for varying length patterns are
called dynamic kernels [3]. This work focus on designing dynamic kernels for
varying length patterns.

1.1 Scene images represented as sets of local
feature vectors

A scene image can be defined as a semantically coherent human-scaled view
of a real-world environment [4]. Scene image’s content can be represented at
several levels depending upon the kind of information being considered. For
example the lowest level comprises of low level primitives such as color and



texture. The next level consists of semantic cues such as buildings, roads,
streets etc. Our aim is to identify the class to which the given image be-
longs and to achieve this we need features in the image. The most important
characteristic we require is that there must be a strong correlation between
feature values and the corresponding class of the image. Once, the features
are identified, a classifier can be constructed using classifiers like SVM. Low
level features can be obtained from the complete image as a whole or from
individual local regions of the image. The low-level visual features extracted
by processing all the pixels in an image are used to obtain a d-dimensional
global feature vector. Semantic variability of a scene image may not be well
represented by a global feature vector. Thus it is necessary to go for local
feature vectors to capture local semantic information in a better way. There
exist two approaches to extract local feature vectors. In the first approach,
image is divided into fixed sized blocks and then features are extracted as
shown in Figure 1.1. While in the second approach, interest points are de-
tected first, and then around the interest point, fixed size block is considered
and feature vector is extracted as illustrated in Figure 1.2.

Fixed size blocks §

Figure 1.1: Illustration of representing an image by local feature vectors
extracted from fixed size non overlapping blocks [4].

Blocks around ’ | | K11 | X1z | | X |
interest points | Y | e | | }(m |
| Xr1 | X1z | | }(-ml

Figure 1.2: TIllustration of representing an image by local feature vectors
extracted from fixed size blocks that are placed around interest points [4].

Let X be the scene image and {x;, X2, X3, ..., X7} be the local feature vectors
extracted from the image. The scene image is then represented as a set of



local feature vectors as X = {x1, X2, X3...x7}. When the images are of differ-
ent sizes, the number of fixed size non-overlapping blocks in them will also
be different resulting in different number of local feature vectors extracted
from both the images. Such sets of different number of local feature vectors
are called varying length patterns of images.

1.2 Speech signals represented as sets of local
feature vectors

Short-time analysis of a speech signal involves performing spectral analysis
on frames of about 20 milliseconds duration each and representing a frame
by a real valued local feature vector. Acoustic modeling of subword units of
speech such as phonemes, triphones and syllables, involves developing classi-
fication models for patterns extracted from speech segments of subword units.
Even when two signals belong to utterance of the same class, their durations
can be different and hence the number of local feature vectors obtained after
short time analysis is different. Duration of speech signal of a subword unit
is short and it is necessary to model the temporal dynamics and correlations
among the features while developing the classification models for subword
units. In such cases, it is necessary to represent a speech signal as a sequence
of local feature vectors. The speech signal of an utterance with 1" frames is
represented as a sequential pattern X = {x;,Xs, X3...Xx7}, where x; € R? is
the local feature vector for frame t¢.

In the tasks such as text-independent speaker recognition, spoken lan-
guage identification and speech emotion recognition, a phrase or a sentence
is used as a unit. The duration of an utterance of a phrase or a sentence is
long. Preserving sequence information in a phrase or a sentence is not consid-
ered to be critical for these tasks. The phonetic content in the speech signal
is not considered to be important for these tasks, and preserving the sequence
information is not critical. In such cases, the speech signal of an utterance
can be represented as a set of local feature vectors, without preserving the se-
quence information. Let X be the speech signal and {x;, x3, X3, ..., X7} be the
d-dimensional local feature vectors extracted from different frames of long du-
rational speech signal as shown in Figure 1.3. The long durational speech sig-
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Xq X3 X3 L] L L] L] X7

Figure 1.3: Illustration of representing an speech signal as a set of local
feature vectors.

nal is then represented as a set of local feature vectors X = {x1, X2, X3...X7}.
When the duration of two speech signals are different, the number of local
features vectors extracted from them will also be different resulting in sets of
varying cardinality. Such sets of different number of local feature vectors are
called varying length patterns of speech. In this research work we focus only
on the classification of long duration speech signals represented as varying
length sets of local feature vectors.

1.3 Classification of varying length patterns
of speech and images

Gaussian mixture models (GMMs) [5] are commonly used for classification
of varying length patterns represented as sets of local feature vectors. The
maximum likelihood (ML) based method is commonly used for estimation
of parameters of a GMM for each class. The ML based method gives robust
estimates of parameters only when sufficient training data is available. When
the training data available for a class is limited, robust estimates of parame-
ters can be obtained through the maximum a posteriori (MAP) adaptation of
a class-independent GMM (CIGMM), which is also called as universal back-
ground model (UBM), to the training data of each class [6]. The CIGMM is
a large size GMM built using the training data of all the classes. The ML
method and the MAP adaptation method are non-discriminative training
based methods because the estimation of parameters for each class is done
independently. The discriminative training based large margin method has



been proposed for estimation of parameters of GMMs [7]. In this method,
the parameters of the GMMs of all the classes are estimated simultaneously
by solving an optimization problem to maximize the distance of training ex-
amples to the boundaries of the classes.

The discriminative model based approaches to classification of varying
length patterns of speech and images represented as sets of local feature
vectors includes the SVM based approaches [1]. There are two approaches to
varying length pattern classification using SVMs depending on the type of
kernel used. In the first approach, a varying length pattern is first mapped
onto a fixed length pattern and then a kernel for fixed length patterns is
used to build the SVM [8,9]. In the second approach, a suitable kernel
for varying length patterns is designed. The focus of this research work
is to use dynamic kernel based SVMs for classification of varying length
patterns of speech and images represented as sets of local feature vectors.
Different approaches to design the dynamic kernels are as follows: (1) Explicit
mapping based approaches [10-12] , where a set of local feature vectors is
mapped onto a fixed dimensional representation and a kernel function is
defined in the space of that representation. (2) Probabilistic distance metric
based approaches [12,13] , where a suitable distance measure for two sets of
local feature vectors is kernelized. (3) Matching based approaches [14,15]
where a kernel function is defined by matching the local feature vectors in a
pair of examples. In this research work, we address the issues in designing
the dynamic kernels using the matching based approaches. We propose to
build a family of example-specific density based matching kernels (ESDMK)
based support vector machine (SVM) classifiers for varying length patterns
of speech and images represented as sets of local feature vectors.

1.4 Objectives and scope of the work

The objective of this research work is to address the issues in designing and
demonstrating ESDMK-based SVM classifiers for the classification of vary-
ing length patterns of speech and images represented as sets of local feature
vectors.

In this research work, the proposed ESDMK is constructed between a
pair of examples represented as sets of local feature vectors by matching



the estimates of example-specific densities computed at every feature vec-
tor in the two examples. For every feature vector in the pair of examples
an example-specific density is obtained by computing its k nearest neighbors.

The main issue in obtaining a better ESDMK is the choice of k, the
number of neighbors. This issue is addressed by combining all the matches
obtained using different values of £ using pyramid match principle.

The ESDMK designed using both the approaches does not include the
spatial information in the scene images which is important for better match-
ing of images. This issue is addressed by considering a fixed number of spatial
regions in every scene image and constructing ESDMK for the local feature
vectors in a particular region from the two examples.

The effectiveness of ESDMK-based SVMs is demonstrated using the stud-
ies on speech emotion recognition, speaker identification and scene classifi-
cation tasks.

1.5 Organization of the thesis

The thesis is organized as follows:

In Chapter 2 we provide an introduction to generative and discrimina-
tive approaches for classification of sets of local feature vectors.

In Chapter 3 we introduce dynamic kernels. Commonly used dynamic
kernels for varying length patterns of speech and images represented as sets
of local feature vectors are presented.

In Chapter 4 we propose the example-specific density based matching
kernel (ESDMK) for sets of local feature vectors. We show that the capabil-
ities of ESDMK in capturing the local information is better than the other
dynamic kernels. The effectiveness of the SVM-based classifiers using the
proposed ESDMK is studied for scene image classification, speech emotion
recognition and speaker identification.



In Chapter 5 we propose pyramid example-specific density based match-
ing kernel (PESDMK). An ESDMK essentially matches the two sets of local
feature vectors for a particular value of k. We propose to use pyramid match
principle to enhance the matching ability of ESDMK by considering the in-
creasing values of k.

In Chapter 6 we propose spatial example-specific density based match-
ing kernel (SESDMK) and pyramid spatial example-specific density based
matching kernel (PSESDMK). Scene images carry a lot of spatial clues that
can be used in the computation of similarity between a pair of scene im-
ages. Thus for scene image classification, spatial ESDMKSs are proposed to

incorporate spatial information present in the scene images while computing
ESDMKSs.

In Chapter 7 we summarize the contributions of the present work. We
also present some directions for further work.



Chapter 2

Approaches for Classification of
Sets of Feature Vectors

Modern schemes for classification tasks generally fall into one of the two broad
approaches, generative or discriminative. Both of these approaches are de-
scribed in this chapter. In the first approach, generative models are built for
each class independently and then Bayes’ decision rule is applied to classify
the example. This chapter introduces the Gaussian mixture model (GMM) as
the generative model based approach for classification of sets of local feature
vectors. Discriminative schemes are an alternative approach for classification
tasks. Unlike generative approaches, these attempt to model either the class
boundaries or posterior probabilities directly. Discriminative model based
approach for classification of sets of local feature vectors described in this
chapter includes support vector machines (SVM).

2.1 Generative model based approaches for
classification of sets of local feature vec-
tors

Generative model based approaches for classification of sets of local feature
vectors uses the Bayes’ classifier. In generative model based approaches for
classification, underlying probability distribution function is built for each
of the semantic class. The Bayes’ decision rule is then applied to assign the



final label to the example. Let C' be the total number of classes and X be an
example represented as sets of local feature vectors, X = {x;, X2, X3, ..., X7 }.
The likelihood of X for class ¢, p(X|c), is used to compute the corresponding
posterior probability using the Bayes’ rule as follows:

p(X|c)P(c)
p(X)

Here, P(c) is the prior probability of class ¢ and p(X|c) is the likelihood of
example X for class ¢, p(c|X) is the posterior probability of the example
X belonging to semantic class c. The class conditional density is generally
computed using a suitable model for the probability distribution of data.
The main issue in the generative model based approaches is the choice of
a model for the probability distribution. One of the most popular forms of
distribution for modeling the underlying distribution is the Gaussian mixture

model (GMM).

y = argmax p(c| X ) = argmax (2.1)

2.1.1 GMDM-based classifier for sets of local feature
vectors

Gaussian mixture models (GMMSs) are the commonly used generative models
for classification. Let X = {x1,Xa,...x7.} be the set of local feature vectors
for an example X in the training dataset of class ¢, where T, is the number of
local feature vectors in X. The likelihood of a local feature vector x; being

generated by the GMM for class ¢, A., with K Gaussian components is given
by

K
p(xt; >\c) = Z ch/\/’(xt; Mk, Eck) (22)

k=1

where 7. are the mixture weight and must satisfy
0 S Tk S 1
and

K
E Tk — 1
k=1

e and X are respectively the mixture weight, mean vector and covariance



matrix of the kth component of \.. Here N (X; pter, Xex) is the multivariate
Gaussian distribution for the kth component of \. given by

(5 (% = pa) "S5 (x0 = pr)) (2.3)

1
E—— 4
Jens, T2

Training a GMM for class ¢ involves the estimation of parameters, A\, =
{Teks ek, Xer }, £ = 1,2, ..., K, using the training data set of class ¢. Maxi-
mum likelihood (ML) method is commonly used for estimation of parameters
of a GMM. The ML method estimates the parameters of a GMM such that
the total likelihood is maximized. The log likelihood of an example, repre-

sented by a set of local feature vectors, Y = {y,,¥s,...yr} , for A. is given
by

N(Xt; ek, Eck) =

T K
mp(YIA) = In Y 7N (y;: fhers Ser) (2.4)
k=1

t=1

Then a class label y for Y is assigned using the following decision rule

y = argmax In p(Y|A.) + In P(c) (2.5)

A GMM-based classifier used for speaker identification in [16] uses speech
utterances from 49 speaker classes which is a subset of speakers in the KING
speech database [17]. A frame size of 20 ms and a frame shift of 10 ms
are used for feature extraction from the speech signal of an utterance. Ev-
ery frame is represented using a 12-dimensional feature vector of cepstral
mean normalized [18] Mel frequency cepstral coefficients (MFCC). A 50-
component GMM is considered for each speaker. The GMM-based classifier
achieved 94.5% identification accuracy. This performance is compared with
that obtained using the vector quantization (VQ) based method using 100
codevectors and a radial basis function (RBF) neural network model with
800 basis functions. It is shown that speaker identification using the GMM-
based classifier attained a better accuracy compared to the classifier that uses
the VQ-based method and a RBF model. In [19], a GMM-based classifier is
used for speech emotion recognition using the emotional speech database for
Basque recorded by the University of the Basque. This database contains
speech utterances belonging to six emotional categories, namely, anger, fear,

10



surprise, disgust, joy and sadness. A 39-dimensional MFCC feature vector is
extracted from a frame of 25 ms with a shift of 10 ms from the speech signal
of an utterance. A speech emotion recognition accuracy of 98.4% is achieved
using a GMM-based classifier that uses a 512-component GMM to model an
emotion class.

One of the limitations of maximum likelihood (ML) method for GMM pa-
rameter estimation is that, it yields robust estimates of the parameters only
when sufficient number of examples are available in training data. When
only a limited amount of training data is available for a class, robust esti-
mates of parameters can be obtained through maximum a posteriori (MAP)
adaptation of a class-independent GMM (CIGMM) to the training data of
each class [5,12]. The adaptation provides a tight coupling between a class
model and CIGMM. The CIGMM, also called as universal background model
(UBM), is a large GMM built using the training data of all the classes. A
class-dependent GMM is obtained by adapting the UBM to the data of a
class. The MAP adaptation method is commonly used for adaptation. The
adaptation is carried out using the expectation maximization (EM) method.
The first step of the EM method estimates the sufficient statistics for each
component in the UBM such as mixture weight, mean, and variance using the
training data of a class. In the second step, these new estimates of sufficient
statistics are combined with the UBM parameters using a data-dependent
mixing coefficient. The data-dependent mixing coefficient is designed so that
the components with high counts of data from the class rely more on the new
sufficient statistics for final parameter estimation, and the components with
low counts of data from the class rely more on the old sufficient statistics
for final parameter estimation. Given a UBM and the set of local feature
vectors extracted from all the examples in the training data of a class c,
D. = {x.,Xc, ..., Xcr, }, the probability of x. being generated by the com-
ponent k of UBM, 7 (x), is computed as

TN (Xet| e, L)
Ti(Xet) = =% (2.6)
e TrN (et | e Zi)
where 7, is the mixture coefficient of the component &, and N (X |por, L)
is the normal density for the component k with mean vector u, and covari-

ance matrix ;. The effective number of feature vectors belonging to the

11



component k is given as
Te

T = W(Xer) (2.7)

t=1

The weighted mean of the examples belonging to the kth component is
obtained as

Ek(XCt): ! Z’Yk(xct)xct (28)

The variance of the effective feature vectors belonging to the kth component
is obtained as

1
Ey(x%) = 7 > (%)X (2.9)
where x? is the shorthand notation for diag(x.xZ) [5].
These new sufficient statistics obtained from the training data are used to

update the old UBM sufficient statistics for the component k£ and obtain the
adapted parameters for the component k£ as follows:

Wy = |88 T/ T, + (1 — B2)mi)7 (2.10)
frr = (B Eq(xe) /T + (1= B (2.11)
6% = BY B, (x2) /T, + (1 — 80) (o} + u2) — i (2.12)

The adaptation coefficients {BEZ), Bé,’: ), ﬁé,’:)} control the balance between the
old and new estimates. The scale factor, 7, in Equation 2.10 is used to en-
sure that the sum of all the mixture weights is unity. The data-dependent
adaptation coefficient gy, p € {m, p, v} used in above equations is defined as

Tck

(p) _
Pk = 77, 7

where 7(p) is a fixed relevance factor for parameter p.

(2.13)
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This GMM-UBM system is the state-of-the-art system for classification
task. In [6], a 2048-component UBM was built using the 1998 NIST SRE
development data and is adapted to each of the 640 speaker classes in the
training data from 1999 NIST SRE corpus. The resulting GMM-UBM sys-
tem was evaluated for speaker verification task using the test data from 1999
NIST SRE corpus. It is also shown in [6] that only mean adaptation is suf-
ficient to achieve good speaker recognition performance when the available
data is less.

The ML method and the adaptation methods are non-discriminative
training based methods because the estimation of parameters for each class
is done independently. Recently, discriminative training based large margin
(LM) method has been proposed for estimation of parameters of GMMs |7,
20]. In this method, the parameters of GMMs of all the classes are estimated
simultaneously by solving an optimization problem to maximize the distance
of training examples to the boundaries of the classes. In [21] GMM-based
Bayesian classification is performed for image classification using the large
margin based method for estimation of parameters of GMM. The LMGMM-
based Bayesian classifier is built by refining the parameters of the EMGMM
for each class using the large margin technique. In [20], a large margin GMM
is used for speaker recognition task. From every frame of size 20 ms with
the shift of 10 ms, 50 linear frequency cepstral coefficients (LFCC) were ex-
tracted. A 256-component UBM is built using the local feature vectors of
all the utterances from the 2004 NIST SRE corpus. Then a MAP adapted
GMM is built for each of the 50 male speakers belonging to the 2006 NIST
SRE corpus. The large margin GMM-based system is built by refining the
parameters of the adapted GMM for each speaker class. It was shown that
the large margin based GMM classifier achieved a speaker identification ac-
curacy of 77.6% which was better than the accuracy of the MAP adapted
GMM-based system (73.3%).
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2.2 Discriminative model based approaches
for classification of sets of local feature
vectors

An alternative to the generative model based approaches for classification is
the discriminative model based approaches. The discriminative model based
approaches build the class boundaries by directly discriminating the data of
each class from the data of the remaining classes. The discriminative model
based approach used in this thesis is the support vector machine (SVM) for
classification of sets of local feature vectors.

2.2.1 Support vector machine for classification of sets
of local feature vectors

The support vector machine (SVM) [1] is a binary discriminative classifier
that has been found to yield good performance on a wide range of machine
learning tasks. SVMs are distance based classifiers that operate by finding
a linear decision boundary according to a maximum-margin criterion. Con-
sider a training dataset, D = {xy,...,xy}, where each x; is a vector of d
elements and has an associated binary label y; = w where w € {+1,—1}.
When the training set is linearly separable, it is possible to locate a separat-
ing hyperplane within this space such that all training examples are correctly
classified. This hyperplane is defined by weight vector w and bias b, a test
example x may be classified according to the Equation 2.14

y* = sign(w’x + b) (2.14)

Equation 2.14 is invariant under a positive rescaling of the hyperplane param-
eters. Thus, in order to obtain a unique solution it is necessary to introduce
additional constraints. For SVMs this is achieved by defining canonical hy-
perplanes on either side of the decision hyperplane. For a fixed value of w
and b these are defined by those x € D that form solutions to w/x+b = +1
and those x € D that form solutions to w/x + b = —1. Training examples
are then constrained to lie outside this region. This arrangement is depicted
in Figure 2.1(a) for two-dimensional data. Under these conditions the size of
the margin can be calculated using the following expression
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(&) hard margin (b) soft margin

Figure 2.1: Optimal SVM hyperplane for (a) linearly separable data using
a hard margin and (b) non-linearly separable data using a soft margin with
slack variables.

Margin = (2.15)

wlw
The maximum-margin decision boundary is therefore defined by the parame-
ters w and b that maximize equation 2.15 such that all training examples lie
outside the margin. This yields the following quadratic optimization prob-
lem, known as the (hard margin) primal SVM problem.

1
minimize —-w'w
W.b 2 (2.16)
subject to i (w!x +b) > 1Vi

In many situations, particularly when dealing with noisy data, it is not pos-
sible to linearly separate the training set. To allow SVMs to be trained in
such conditions, the margin constraints, y;(w’x + b) > 1Vi, are often re-
laxed to allow some training examples to be misclassified. A slack variable
& is introduced for each training example x; to provide a measure of the
training error associated with the example. For each training example x;,
the slack variable &; is non-negative, and is equal to the distance by which
x; violates the original margin constraints. For correctly-classified training
examples, & = 0. This is known as the soft margin case and is depicted in
Figure 2.1(b). To avoid increasing the margin at the expense of misclassifying
the training examples, the objective function is then altered to additionally
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