DESIGN AND PERFORMANCE ANALYSIS OF GRID CONNECTED SOLAR PV SYSTEM

A THESIS

submitted by

LAKSHMANAN S A

for the award of the degree

of

DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING AND ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY MANDI

June 2017

Declaration by the Research Scholar

This is to certify that the thesis entitled "DESIGN AND PERFORMANCE ANALYSIS OF GRID CONNECTED SOLAR PV SYSTEM", submitted by me to the Indian Institute of Technology Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by me under the supervision of Dr. Bharat Singh Rajpurohit and co-supervision of Dr. Amit Jain, CPRI Bangalore. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Place: Mandi Date:

Signature of Research Scholar

THESIS CERTIFICATE

This is to certify that the thesis titled**DESIGN AND PERFORMANCE ANALYSIS OF GRID CONNECTED SOLAR PV SYSTEM**, submitted by **LAKSHMANAN S A**, to the Indian Institute of Technology Mandi,for the award of the degree of Doctor of Philosophy, is a bonafide record of the research work done by him under our supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Dr. Bharat Singh Rajpurohit Supervisor Associate Professor School of Computing & Electrical Engineering IIT-Mandi, Mandi 175001

Dr. Amit Jain Co-supervisor Joint Director Power Systems Division CPRI-Bangalore

ACKNOWLEDGEMENTS

On the completion of this work, it has been a great honor and privilege to express my deep sense of gratitude and indebtedness to my thesis supervisor Dr. B. S. Rajpurohit for his skilled guidance, unfailing support, stimulating discussions and constant encouragement not only during this dissertation work but also over entire period of my association with him. I offer my deep sense of reverence and profound indebtedness to him for his deep concern both for my academics and for personal welfare. I also thanks to my co-supervisor Dr. Amit Jain for his constant support, guidance and motivation during my research work carried out at CPRI-Bangalore. I must say, I have pride in working with both of them.

I would like to thank other faculty members for their support and cooperation. I am also grateful to IIT Mandi and CPRI-Bangalore for assisting me in carrying out various tasks with ease. I would like to thank my friends and colleagues, Thirumurugan, Gurinderbir, Rajeev, Ranjit, Anshul, Rajesh, Prabhu, Venkatesh and Abhinay for their constant support and company. I extend my thanks to my friends Oorappan, Kumar, Ram and James who always kept my spirit high during tough times. My special thanks to Rathinavel, Sudharson and Tamilraj who always supported me during this thesis work. Achievements in life do not come alone by one's own efforts but by the blessings of, teachers and parents. I express my deep sense of reverence and profound gratitude to my father and mother to all their pains and sufferings; they have undergone to bring me up

to this stage and thus enabling me to devote myself to my studies at IITM and i without having worry.

In last I want to show my deepest sense of gratitude to almighty Oosru Amman and Bheema Kali who are always there to support me in every circumstance.

Lakshmanan S A

ABSTRACT

The integration of photovoltaic (PV) power generation to the electric grid can result in several benefits including line loss reduction, increased overall energy efficiency, relieved transmission and distribution congestion, etc. Grid interconnection of PV systems is accomplished through the voltage source inverter (VSI), which converts DC power generated from PV modules to AC power. Filter is used at the output of the VSI to prevent the high-frequency switching ripples injected into the grid. The control of grid connected PV system and correct regulation of energy flow from the PV to grid still plays the most important role. Among the many control functionalities, a current controller is an important part that controls the VSI switching with a proper modulating operation. Moreover, the phase angle and frequency of the grid voltage should be properly synchronized with inverter voltage and it is achieved by using proper grid synchronization techniques. Power quality (PQ) improvement, effective filter design and grid voltage support functions are additional functionalities required to efficiently control the grid connected PV system. This thesis develops the control techniques to improve the performance of the grid connected PV system. Overall work has been completed in three sections.

First section is the study of grid connected PV system based on various aspects including PV cell model, PV characteristics, current control techniques and different standards for grid connected PV system. In this section, a novel current controller with grid harmonic compensation technique is proposed in order to effectively suppress the harmonics in the grid voltage. In order to effectively control the DC-link voltage, feed-forward compensation path is incorporated along with current controller.

A grid connected VSI with inductor-capacitor-inductor (LCL) filter based on input PV system can be treated as an active power filter (APF) and the control structure is considered as a distribution static compensator (DSTATCOM) to compensate the harmonic currents generated by various non-linear loads connected in the system. In the second section, a new improved active damping technique with decoupled synchronous

reference frame (SRF) current controllers using proportional-integrator (PI) plus harmonic-compensator (HC) are proposed for control of DSTATCOM with LCL filters in order to achieve effective load compensation. The proposed SRF PI and (PI+HC) current controllers show improved performance with high grade of protection to harmonics caused by non-linear loads connected in the system. Most of the controllers are based on SRF PI current controller and it has difficult coupling between d and q axis and hence decoupling is very tough. Therefore, a new technique based on active damped dual loop stationary frame current controllers using proportional-resonant (PR) plus HC is proposed for control of DSTATCOM with LCL filter in order to achieve operative load compensation. Decoupling process existed in the SRF current controller is ignored and also current controller design is simplified by using this proposed control approach.

Conventional grid synchronization approach based on SRF phase lock loop (PLL) is discussed and major drawbacks of the SRF PLL under grid voltage distortions are addressed. In the third section, a low-gain PLL is proposed by using adaptive moving average filter (AMAF) and the performance of the AMAF PLL is estimated under harmonics, phase jump, frequency unbalance on the grid voltage. In this section, sliding discrete Fourier transform (SDFT) based PLL and cosine loop up table (cLUT) along with SDFT PLL techniques are also proposed. The projected SDFT PLL and cLUT based SDFT PLL techniques show improved performance with high grade of protection to harmonics, phase jump and frequency deviation such that these have strong fundamental strength with enhanced phase and frequency estimation in the system.

TABLE OF CONTENTS

AB	STRAC	Т		i
LIS	ST OF F	IGURES	5	ix
LIS	ST OF T	ABLES		xvii
AB	BREVIA	ATIONS		xix
LIS	ST OF S	YMBOL	.S	xxi
1.	Introd	uction		
	1.1	General	l	1
	1.2	Structur	re of Grid Connected Solar PV System	2
		1.2.1	PV System	3
		1.2.2	Inverter	4
		1.23	Filter	4
	1.3	Control	of Grid Connected PV System	5
		1.3.1	Inverter Control	6
		1.3.2	PQ Improvement of Grid Connected PV System	7
		1.3.3	Grid Synchronization of Grid Connected PV System	8
	1.4	State-of	f-the-Art	9
		1.4.1	Current Control Techniques	9
		1.4.2	Grid Connected PV System with PQ Improvement under	11
			DifferentFilter Configurations	
		1.4.3	Grid Synchronization Techniques	14

1.5Motivation and Objective of the Thesis161.6Thesis Organization17

2. Study of Grid Connected Solar PV System

2.1	Introduction	21
2.2	PV System	23

		2.2.1	PV Cell Model	23
		2.2.2	PV Cell Characteristics	24
		2.2.3	Solar PV Panel Configurations	25
	2.3	Current	Control Techniques	28
		2.3.1	Ramp-Comparison Control	31
		2.3.2	Hysteresis Current Control	31
		2.3.3	Voltage Oriented Control	33
		2.3.4	Switching Control Techniques	34
	2.4 Standards, Regulations and Performance Measures of Grid Connec		ds, Regulations and Performance Measures of Grid Connected PV	34
		System	s	
		2.4.1	Grid Connected Solar PV System	36
		2.4.2	Standard for Interconnection of Solar PV to the Grid	36
		2.4.3	Performance Measures of Grid Connected PV System	37
	2.5	Conclus	sions	39
3.	Curre	nt Contre	ol Techniques for Grid Connected PV System	
3.	Curren 3.1	nt Contro Introdu	-	41
3.		Introdu	-	41 42
3.	3.1	Introdu Design	ction	
3.	3.1	Introdu Design	ction of Novel Current Controller Design with Grid Harmonic	
3.	3.1	Introdu Design Compe	ction of Novel Current Controller Design with Grid Harmonic nsation through SVPWM Technique	42
3.	3.1	Introduc Design Compet 3.2.1	ction of Novel Current Controller Design with Grid Harmonic nsation through SVPWM Technique <i>dq</i> -Frame Modeling of VSI with LC Filter	42 43
3.	3.1	Introduc Design Compet 3.2.1	ction of Novel Current Controller Design with Grid Harmonic nsation through SVPWM Technique <i>dq</i> -Frame Modeling of VSI with LC Filter Proposed Current Control Technique with Grid Harmonic	42 43
3.	3.1	Introduc Design Compet 3.2.1 3.2.2 3.2.3	ction of Novel Current Controller Design with Grid Harmonic nsation through SVPWM Technique <i>dq</i> -Frame Modeling of VSI with LC Filter Proposed Current Control Technique with Grid Harmonic Compensation	42 43 44
3.	3.1 3.2	Introduc Design Compet 3.2.1 3.2.2 3.2.3	ction of Novel Current Controller Design with Grid Harmonic insation through SVPWM Technique <i>dq</i> -Frame Modeling of VSI with LC Filter Proposed Current Control Technique with Grid Harmonic Compensation Space Vector Pulse Width Modulation	42 43 44 45
3.	3.1 3.2	Introduc Design Compet 3.2.1 3.2.2 3.2.3 Propose	ction of Novel Current Controller Design with Grid Harmonic insation through SVPWM Technique <i>dq</i> -Frame Modeling of VSI with LC Filter Proposed Current Control Technique with Grid Harmonic Compensation Space Vector Pulse Width Modulation ed Current Controller with Feed-forward DC Voltage Regulator	42 43 44 45 47
3.	3.1 3.2	Introduc Design Compet 3.2.1 3.2.2 3.2.3 Propose 3.3.1 3.3.2	ction of Novel Current Controller Design with Grid Harmonic insation through SVPWM Technique <i>dq</i> -Frame Modeling of VSI with LC Filter Proposed Current Control Technique with Grid Harmonic Compensation Space Vector Pulse Width Modulation ed Current Controller with Feed-forward DC Voltage Regulator Modeling of PV System with Utility Grid	42 43 44 45 47 47

4.	Enhanced Active Damping with Decoupled <i>dq</i> -Frame Current Controllers for				
	Power Quality Improvement				
	4.1	Introduction		59	
	4.2	Design of LCL Filter Components		61	
	4.3	Mathematical Analysis of Grid connected Inverter with LCL Filter for		62	
		DSTATCOM Application			
		4.3.1	Active Damping Methods for LCL Filter	65	
	4.4	Control	of DSTATCOM with Conventional Passive Damped LCL Filter	68	
		using dq-Frame PI Current Controller			
		4.4.1	SRF Theory based Reference Current Extraction	68	
		4.4.2	<i>dq</i> -Frame Current Controller	70	
		4.4.3	Analysis of Conventional Passive Damped LCL Filter with dq-	70	
			FramePI Current Controller		
	4.5	Improv	ed Active Damping with Decoupled dq-Frame Current Controller for	71	
		Control of DSTATCOM with LCL Filter			
		4.5.1	dq-Frame Model of the LCL Filter	73	
		4.5.2	Decoupled Operation of dq-Frame Current Controller with LCL	74	
			Filter		
		4.5.3	Analysis of Proposed Active Damping with Decoupled dq-framePI	76	
			Current Regulator		
		4.5.4	Analysis of Proposed Active Damping with Decoupled dq-frame	78	
			(PI+HC) Current Regulator		
	4.6	Results	and Discussions	80	
	4.7	Conclus	sions	87	
5.	A	Da	ing with all Frame Current Controller for Device Orality		
з.	Acuve	Dampi	ing with $\alpha\beta$ -Frame Current Controller for Power Quality		

5.1	Introduction	89
5.1	muoduction	07

Improvement

5.0	Mathematical Analysis of Grid Connected Inverter with LCL Filter for				
5.2	DSTATCOM Application				
	5.2.1	Control of DSTATCOM with Conventional Passive Damped LCL	94		
		Filter using dq-Frame PI Current Controller			
	5.2.2	Analysis of Conventional Passive Damped LCL Filter with dq-	95		
		Frame PI Current Controller			
5.3	Propos	ed Active Damping with Dual Loop $\alpha\beta$ -Frame Current Controllers for	95		
	control of DSTATCOM Application				
	5.3.1	Analysis of PR Controller	97		
	5.3.2	Design of PR Current Controller Parameters	98		
	5.3.3	$\alpha\beta$ -Frame modeling of LCL Filter with Current Controller and Plant	101		
	5.3.4	Analysis of Proposed Active Damping with $\alpha\beta$ -Frame PR Current	102		
		Regulator			
	`5.3.5	Analysis of Proposed Active Damping with $\alpha\beta$ -Frame (PR+HC)	104		
		Current Regulator			
5.4	Results	s and Discussions	106		
5.5	Conclu	isions	113		
Desig	n of Low	-Gain Phase Lock Loop System under Distorted Grid Conditions			
6.1	Introdu	lection	115		
6.2	Overvi	Overview of PLL System			
6.3 SRF PLL based Phase Detection		LL based Phase Detection	118		
	6.3.1	Design of SRF PLL based Phase Detection	119		
	6.3.2	Frequency Response Analysis of SRF PLL System	121		
	6.3.3	Analysis of SRF PLL under Distortions in the Grid Voltage	121		
6.4	Analys	is of Moving Average Filter based PLL System	123		
	6.4.1	Design Guidelines for Proposed AMAF PLL System	125		
	6.4.2	Analysis of Proposed AMAF based PLL using PI based LF	126		
	6.4.3	Analysis of Proposed AMAF based PLL using PID based LF	127		

6.

	6.5	Results and Discussions	129
	6.6	Design of Improved Phase Lock Loop System	139
		6.6.1 PLL based on SDFT Algorithm	140
		6.6.2 PLL Design based on cLUT used SDFT PLL Technique	143
		6.6.3 Mathematical Analysis of cLUT used SDFT PLL	145
		6.6.4 Frequency Response Analysis of Proposed SDFT PLL and cLUT	146
		used SDFT PLL Systems	
	6.7	Results and Discussions	148
	6.8	Conclusions	154
7.	Concl	usions and Future Work	
	7.1	General Conclusions	155
	7.2	Summary of Important Findings in this Research Work	157
	7.3	Scope for Future Work	160
Ref	erences	S	163
Ap	pendix	A System Parameters	177
Cu	rriculu	m-Vitae	