Metal Organic Materials (MOMs) for Environmental, Biological and Catalytic Applications

A Thesis submitted by

Darsi Rambabu

(Roll No: D12055)

for the award of the degree of

Doctor of Philosophy

School of Basic Sciences Indian Institute of Technology (IIT) Mandi Mandi, Himachal Pradesh-175005 March, 2017

"An equation for me has no meaning unless it represents a thought of God" – Srinivasa Ramanujan

Declaration by the Research Scholar

This is to certify that the thesis entitled "Metal Organic Materials (MOMs) for Environmental, Biological and Catalytic Applications", submitted by me to the Indian Institute of Technology, Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by me under the supervision of Dr. Abhimanew Dhir and Dr. Pradeep C. Parameswaran. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

I.I.T. Mandi (H.P.) Date: Signature of Research Scholar

Indian

Mandi

Darsi Rambabu

Thesis Certificate

This is to certify that the thesis entitled "Metal Organic Materials (MOMs) for Environmental, Biological and Catalytic Applications", submitted by Mr. Darsi Rambabu to the Indian Institute of Technology, Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

I.I.T. Mandi (H.P.) Date: Research Guide

Dr. Abhimanew Dhir

Dr. Pradeep C. Parameswaran (co-guide)

Indian

stitute of

Acknowledgements

While pursuing my Ph.D. degree, many seen and unseen hands pushed me forward, soul put me on the right path and enlightened me with their knowledge and experience. I shall remain grateful to all of them. I enjoyed this learning journey as a researcher.

First of all, I would like to express my deep gratitude and profound indebtedness to my Ph.D. advisors Dr. Abhimanew Dhir and Dr. Pradeep C. Parameswaran for their dexterous guidance, valuable suggestions and perceptive enthusiasm which enabled me to accomplish the task of undertaking the present study. They set an example of a world-class researcher for their passion on research. Their wide knowledge and logical way of thinking have been of great value for me. Their understanding, encouraging and personal guidance provided me a good basis for the present thesis.

I express my sincere thanks to DC members (Dr. Chayan K. Nandi, Dr. Prem Felix Siril, Dr. Venkata Krishnan, Dr. Satinder Kumar Sharma, Dr. Pradeep C. Parameswaran and Dr. Abhimanew Dhir) for their valuable suggestions and continuous monitoring of my research.

I express my sincere thanks to The Director, IIT Mandi for his support and encouragement. The research facilities at Advanced Materials Research Center (AMRC), IIT Mandi are also gratefully acknowledged hereby.

I sincerely thanks to the Council of Scientific and Industrial Research (CSIR), India for the fellowship.

My sincere thanks to all chemistry faculty members for their invaluable advice and encouragement during course work as well as research work. I am also very much thankful to my research group members for their invaluable support and help during my research work.

I would like to thank all my friends for their continuous support and encouragement.

My earnest thanks are due to AMRC staff for their assistance in lab.

I would like to acknowledge to present and past Deans (Academics and Students) and staff for their great support.

I would like to thanks to Finance Officer (FO) and staff members IIT Mandi for their assistance regarding fellowship.

A special word of thanks to my parents and all family members for their continuous inspiration, motivation and cooperation.

I would like to thanks to my mother and family members for their continuous support, motivation and cooperation.

Above all, praises are due to the loving God, the ultimate source of knowledge, a part of which he reveals to man and may peace be upon all his messengers throughout the world for success and guidance of mankind. I express my gratitude and indebtedness to the almighty for countless blessings.

Table of Contents

Acknowledgementsi	
Abbreviationsx	ζ
Materials and instrumentation usedxv	<i>ii</i>
Abstractxvi	ii

Chapter 1. Introduction

Abstr	act		1
1.1.	Metal	organic materia	als (MOMs): An overview2
1.2.	Synthe	etic methods of	MOMs4
	1.2.1.	Solvothermal	wet-chemistry method5
	1.2.2.	Microwave m	ethod6
	1.2.3.	Sonochemical	method7
	1.2.4.	Mechanochen	nical method8
	1.2.5.	Electrochemic	cal method9
1.3.	Applic	cations of coor	dination compounds (CPs, MOFs and Complexes) as MOMs
	•••••		
	1.3.1.	Gas storage as	nd separation10
		1.3.1.1.	Hydrogen Storage10
		1.3.1.2.	Methane (CH ₄) Storage12
		1.3.1.3.	Oxygen (O ₂) Storage14
		1.3.1.4.	Gas Separation14
	1.3.2.	Sensing appli	cations16

	1.3.3. Magnetic Properties	18
	1.3.4. Biological applications	20
	1.3.5. Catalytic applications	22
	1.3.6. Photo-active applications	23
1.4.	Applications of self-assembled materials as MOMs	23
	1.4.1. Calix (Thia)[n]arenes as templates for self-assembled MOMs	24
1.5.	Scope and objectives	25
1.6.	Thesis overview	26
Refere	ences	26

Chapter 2. A cytochrome c encapsulated metal organic framework as a

bio-material for sulfate ion recognition

Abstra	act		39
2.1.	Introduction		
2.2.	Experi	imental	41
	2.2.1.	X-ray crystallography details	41
	2.2.2.	Synthesis of 3 and desolvation of 3 (4)	41
	2.2.3.	Encapsulation of cyt c in 4 (preparation of ensemble 5)	42
	2.2.4.	Sample preparation for spectroscopic and microscopic studies	42
	2.2.5.	Computational methods	43
	2.2.6.	Calculations for quantum yield	43
2.3.	Result	ts and discussion	44
2.4.	Concl	usion	60

Chapter 3. Nickel–sodium pyrene tetrasulfonic acid based coordination polymer as fluorescent template for recognition of azo dyes

Abstr	pact		65
Absu	act		
3.1.	Introd	luction	66
3.2.	Experi	imental	67
	3.2.1.	X-ray crystallography	67
	3.2.2.	Calculations for quantum yield	67
	3.2.3.	Synthesis of Na-Ni-PTS	68
	3.2.4.	Samples preparation	68
3.3.	Result	ts and discussion	68
	3.3.1.	Description of Na-Ni-PTS crystal structure	69
	3.3.2.	Na-Ni-PTS as chemosensor for azo dyes	76
3.4.	Conclu	usions	88
Refer	ences		

Chapter 4. Al(III)-phenanthroline xerogel for dual application: catalyst

for knoevenagel condensation and fluorescent chemosensor for azo dyes

Abstra	ct	.92
4.1.	Introduction	.93
4.2.	Experimental	94

	4.2.1.	2.1. Synthesis of ligand 1,10-Phenanthroline-2,9-dicarboxylic acid (1)		
		nomohydrte94		
	4.2.2.	Synthesis of AIPDAX94		
	4.2.3.	General procedure for Knoevenagel condensation using AIPDAX (xerogel)		
		as catalyst94		
		4.2.3.1. General procedure for Knoevenagel condensation		
		products94		
		4.2.3.2. General procedure for the preparation of 2-Amino-4H-		
		chromenes95		
	4.2.4.	Characterization NMR data of the isolated products95		
	4.2.5.	Samples preparation97		
	4.2.6.	Calculations for quantum yield98		
4.3.	Result	and discussion98		
	4.3.1.	Synthesis and characterization of AIPDAX98		
	4.3.2.	AIPDAX as catalyst for Knoevenagel condensation103		
	4.3.3.	AIPDAX as chemosensor for azo dyes107		
4.4.	Conclu	ions114		
Refere	nces			

Chapter 5. Nano dispersion of 3D Cd(II) coordination polymer: synthetic blood plasma anticoagulant

Abstra	ct	.119
5.1.	Introduction	.120

5.2.	Experimental121		
	5.2.1. X-ray crystallography details	121	
	5.2.2. Synthesis of RAM 1	122	
5.3.	Results and discussion	122	
5.4.	Conclusions	134	
Refere	nces	134	

Chapter 6. Self-assembled material of palladium nanoparticles and thiacalix[4]arene Cd(II) complex as efficient catalyst for nitro-phenol reduction

Abstra	act	137
6.1.	Introduction	138
6.2.	Experimental	139
	6.2.1. X-ray crystallographic data collection and refineme	nt of the
	structure	139
	6.2.2. Synthesis of thiacalix[4]arene (TCA) (2)	140
	6.2.3. Synthesis of [Cd ₄ (TCA) ₂]·DMF (3)	140
	6.2.4. Synthesis of Pd self-assembly (5)	140
	6.2.5. Preparation of samples of 5 for FTIR, TGA and PXRD analysis	141
	6.2.6. Catalytic reduction of p-nitrophenol with catalyst 5	141
	6.2.7. Catalyst leaching experiment for catalyst 5	142
	6.2.8. Procedure for reduction of 4-nitrophenol on silica by 5	142
6.3.	Results and discussion	142

	6.3.1. Synthesis and characterization		
	6.3.2.	Possible mechanism of formation of palladium self-assembly	148
	6.3.3.	Catalytic activity of 5 for reduction of 4-nitrophenol	148
	6.3.4.	Reduction of 4-nitrophenol on silica by 5	154
6.4.	Conclu	usions	155
Refere	nces		155

Chapter 7. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

Abstra			161
7.1.	Introduction1		162
7.2.	Experimental		162
	7.2.1.	X-ray crystallography details	162
	7.2.2.	Synthesis of Ru@SC	163
	7.2.3.	Catalytic reduction of BY azo dye with catalyst Ru@SC	163
	7.2.4.	Stability and recyclability of Ru@SC	163
	7.2.5.	NMR studies for BY reduction using Ru@SC	164
	7.2.6.	Separation and characterization of reduced products of BY	164
	7.2.7.	Catalyst leaching of Ru@SC	164
7.3.	Result	s and discussion	165
	7.3.1.	Synthesis and Characterization of Ru@SC	165
	7.3.2.	Catalytic activity of Ru@SC for reduction of BY azo dye	168

	7.3.3.	Crystal description of DASS-Na	.179
	7.3.4.	Catalyst Ru@SC recyclability and stability	.183
	7.3.5.	Mechanism for BY reduction by Ru@SC	.183
	7.3.6.	BY azo dye reduction in river water (RW) with catalyst Ru@SC	185
7.4.	Conclusions18		.185
Refere	nces		.186

Chapter 8.	Conclusions and future	e perspectives	
Chapter 8.	Conclusions and future	e perspectives	188

List of publications	190
----------------------	-----

Abbreviations

1D	1-dimensional
2D	2-dimensional
3D	3-dimensional
° C	degrees centigrade
4-AP	4-aminophenol
2,6-ndc	2,6-naphthalenedicarboxylate
4-NP	4-nitrophenol
AB	Azobenzene
Al	Aluminium
Ag	Silver
Au	Gold
AYGG	Alizarin yellow GG
Ba	Barium
BDC	benzenedicarboxylic acid
BDTriP	5,5'-(5-(1H-pyrazol-4-yl)-1,3-phenylene)bis(1H-1,2,3-triazole)
BPDC	biphenyl-4,4'-dicarboxylate
BTAC	benzene-1,3,5-tri-β-acrylate
BTC	1,3,5-benzenetricarboxylic acid
BTB	1,3,5-benzenetribenzoate
BTE	4,4',4"-(Benzene-1,3,5-triyltris(ethyne-2,1-diyl))tribenzoic acid
BTT	1,3,5-benzenetristetrazolate
BTEC	1,2,4,5-benzenetetracarboxylate

bipy	4,4' –bipydine
BY	Brilliant yellow
CCD	charge coupled device
CCDC	Cambridge Crystallographic Data Centre
Cd	Cadmium
CPs	coordination polymers
Cr	Chromium
Cu	Copper
CH4	Methane
CHEF	chelation enhanced fluorescence
Cl	Chorine
Со	Cobalt
CO ₂	Carbon dioxide
COD	Chemical Oxygen Demand
cm	centimeter
cyt c	Cytochrome c
dabco	1,4-diazabicyclo[2.2.2]octane)
DASS-Na	4,4'-diaminotrans-stilbene-2,2'-disulfonate disodium hydrate
DCM	Dichloromethane
d/nm	Diameter in nanometer
DLS	Dynamic light scattering
DMF	N,N-dimethylformamide
def	N,N-diethylformamide

DMSO	Dimethyl sulfoxide
DOE	Department of Energy
DW	Distilled Water
Dy	Dysprosium
EDX	Energy Dispersive Analysis of X-rays
Eu	Europium
Fe	Iron
FESEM	Field emission scanning electron microscopy
FTIR	Fourier transform infrared
g L ⁻¹	gram per liter
Gd	Gadolinium
К	kelvin
HRTEM	High resolution transmission electron microscopy
H ₂	Hydrogen
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IC ₅₀	half maximal inhibitory concentration
IR	Infrared
LED	light emitting diode
LAG	liquid-assisted grinding (LAG)
LOD	Limit of detection
mg	Milligram
mg g ⁻¹	Milligram per gram
mdip	5,5'-methylene diisophthalate

min	minute
ml	Milliliter
mM	Millimolar
Мо	Molybdenum
МО	Methyl orange
MO1	Mordant orange 1
MOF	Metal organic framework
MOG	Metal organic gel
mol kg ⁻¹	mole per kilogram
MOM	Metal organic material
MOXG	Metal organic xerogel
Mn	Manganese
MPa	mega pascals
MTB	methanetetrabenzoic acid
MW	Molecular weight
Na	Sodium
Ni	Nickel
nm	Nanometer
NMR	Nuclear magnetic resonance
NPs	Nanoparticles
ns	nano seconds
N ₂	Nitrogen
NTB	4,4',4"-nitrilotrisbenzoic acid

O ₂	Oxygen
OG	Orange G
ORTEP	Oak Ridge Thermal Ellipsoid Plot
θ	Theta
PAP	4-Phenylazophenol
Pd	Palladium
PDI	Polydispersity index
Pt	Platinum
PTS	1,3,6,8–pyrenetetrasulfonic acid tetra sodium salt
PXRD	Powder x-ray diffraction
QN	quinoline
Rh	Rhodium
RPM	Revolutions per minute
Ru	Ruthinium
RT	Room temperature
RW	River water
SII	Sudan II
STP	standard temperatures and pressures
SC	4-sulfocalix[4]arene
SV	Stern–Volmer
SXRD	Single crystal x-ray diffraction
Τ	Temperature
Tb	Terbium

TDPAT	2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine
TFPI	Tissue Factor Pathway Inhibitor
THF	Tetrahydrofuran
TCA	thiacalix[4]arene
TEM	Transmission electron microscopy
TGA-DSC Thermal gravimetric	analysis coupled with differential scanning calorimetry
tatb ³⁻	4,4',4''-s-triazine-2,4,6-triyltribenzoate
Ti	Titanium
TONa	Tropaeolin O sodium salt
ТР	thromboplastin
UV	Ultraviolet
V	volume
V	Vanadium
Vis	Visible
wt%	Weight percentage
w/w	Weight to weight ratio
XRD	X-ray diffraction
Z-Average	Average of particles size
Zn	Zinc
Zr	Zirconium
α	Alpha
β	Beta
γ	Gaama

δ	Delta
λ	Wavelength
τ	Tau
μ	Micro
μg	Microgram
μL	Microliter
μm	Micrometer
μΜ	micro molar
χ	Khi

Materials and instrumentation used

Bovine heart Cytochrome c (Cyt c), 2, 6-napthlene dicarboxylic acid (H₂NDC), Mn(NO₃)₂ 4H₂O, DMF, Na₂CO₃ (CO₃²⁻), NaClO₄ (ClO₄⁻), Na₂HPO₄ (HPO₄²⁻) and tetrabutyl ammonium salts were purchased from Sigma Aldrich. HEPES purchased from Alfa Aesar. 1,3,6,8–pyrenetetrasulfonic acid tetra sodium salt was purchased from Sigma Aldrich. 4sulfocalix[4]arene was purchased from Sigma Aldrich. All other chemicals and reagents were purchased from Sigma Aldrich.

The FTIR spectral studies were performed on Perkin Elmer FT-IR spectrometer using KBr pellets. Fluorescence studies were carried on Agilent Technologies cary eclipse fluorescence spectrophotometer. U.V studies were carried on SHIMADZU UV-2450 spectrophotometer using quartz cuvettes. The fluorescence life time was measured time correlated single photon counting (TCSPC) setup using LASER diode (405 nm) from ISS, USA (ehrones BH fluorescence life time spectrometer). The fluorescence life time was measured by time correlated single photon counting (TCSPC)-HORIBA scientific (Delta Flex system) setup using 390 nm Nano LED. Single crystal X-ray details along with CCDC numbers are given in respective chapters. Powder X-ray diffraction (PXRD) data was collected on Rigaku SmartLab 9 KW rotating anode Powder X-ray diffractometer at room temperature. TEM images collected on SEI TECNAI F20 HRTEM (high resolution transmission electron microscope). The thermogravimetric analysis was carried out using Mettler Toledo thermal analyzer on N₂ atmosphere and heating speed 10 $^{\circ}$ K/ min. FESEM data was collected on Nova Nano SEM-450 JFEI modal of USA (S.E.A) PTE LTD. NMR data was collected on JNM ECX-500 modal of Joel India instrument. Stereo microscope images were collected on Magnuspro, modal x86 3.7.5501 of Magnus analytics.

Abstract

Metal organic materials (MOMs) are promising materials incredibly having wide range of utility in various fields such as magnetism, nonlinear optics, displays, gas purification, gas storage, biomedical applications and electroluminescent devices. MOMs are synthesized by connecting the organic moieties to inorganic species *via* covalent or non covalent interactions. Numerous MOMs have been reported till date including wide range of metals/metal nanoparticles with various organic linkers/macrocycles for diverse applications. However, still there is large scope of design and synthesis of new MOMs for their applications in the fields of environmental and biological science and catalysis.

In the present thesis, we have designed and synthesized different types of MOMs including metal organic frameworks (MOFs) and their hybrids, coordination polymers and self-assembled materials of metal nanoparticles and macrocycles particularly calix[4]arenes and thiacalix[4]arenes for diverse applications. The work is distributed in six different chapters from chapter 2 to chapter 7 excluding chapter 1 and chapter 8 which includes introduction and conclusions respectively.

One of the new significant areas related to porous MOFs being investigated is immobilization of bio-molecules in its pores. In this context, we have designed and synthesized an ensemble of cytochrome c with Mn(II) and 2,6-naphthalene dicarboxylate based MOF. The bio-material selectively senses sulfate ions in 100% aqueous solution and in solid phase with real world application. Further, to explore the utilization of MOMs for recognition of environmentally hazardous molecules, we synthesized a coordination polymer and metal organic xerogel based on pyrene tetrasulfonate and phenanthroline dicarboxylic acid respectively. These two MOMs are utilized as templates for recognition of industrially relevant azo dyes. The real world application of these MOMs as azo dye sensor has been shown by detecting 'brilliant yellow' azo dye on fabric and in common food stuffs where azo dyes are used as adulterants. Xerogel is also evaluated for its catalytic activity in Knoevenagel condensation reaction. We further aimed for the biological applications of MOMs. Thus, we designed and synthesized 2,6 naphthalene dicarboxylate (NDC) and quinoline (QN) based Cd(II) coordination polymer {[Cd(NDC)(QN)]}_n. The synthesized coordination polymer behaves as synthetic blood anticoagulant. A group of pharmaceuticals called anticoagulants which prevent blood coagulation are developed as medication for disorders like thrombosis, pulmonary embolism, myocardial infarction and strokes. In next and final part of thesis, we have reported new self-assembled materials based on Pd and Ru nanoparticles using thiacalix[4]arenes and calix[4]arenes as templates for catalytic reduction of two environmental pollutants '4-nitrophenol' and 'brilliant yellow' azo dye respectively.