FINITE ELEMENT MODELING AND ANALYSIS OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER

A Thesis

Submitted By

TARUN KUMAR (S12026)

For the award of degree of

Master of Science (by research)

SCHOOL OF ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY MANDI Mandi, Himachal Pradesh -175001

October, 2015

Indian Institute of Technology, Mandi Mandi, Himachal Pradesh - 175005

भारतीय प्रौद्योगिकी संस्थान, मण्डी मण्डी, हिमाचल प्रदेश - 175005

Declaration by the Research Scholar

This is to certify that the thesis titled "**Finite Element Modeling and Analysis** of Bistable Piezoelectric Energy Harvester" submitted by me, to the Indian Institute of Technology Mandi for the award of the degree of **Master of Science** (by research), is a bona fide record of the research work carried out by me in the School of Engineering, Indian Institute of Technology Mandi, under the supervision of Dr. Rajeev Kumar and Dr. Vishal Singh Chauhan. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

I.I.T. Mandi (H.P.) Date: Oct 26, 2015 Institute of Technology Mandi

Tarun Kumar

ii

Indian Institute of Technology, Mandi Mandi, Himachal Pradesh - 175005

भारतीय प्रौद्योगिकी संस्थान, मण्डी मण्डी, हिमाचल प्रदेश - 175005

Thesis Certificate

This is to certify that the thesis titled "Finite Element Modeling and Analysis of Bistable Piezoelectric Energy Harvester" submitted by Tarun Kumar, to the Indian Institute of Technology Mandi for the award of the degree of Master of Science (by research), is a bona fide record of the research work done by him under our supervision in the School of Engineering, Indian Institute of Technology Mandi. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Dr. Rajeev Kumar Assistant Professor School of Engineering IIT Mandi

Date: Oct 26, 2015

Indian Institute of

Dr. Vishal Singh Chauhan Assistant Professor School of Engineering IIT Mandi

Date: Oct 26, 2015

ABSTRACT

Enormous research is going on to reduce the size of portable electronic appliances and the use of self-contained power source is required to make more powerful and lightweight electronic devices without traditional batteries. Moreover for remote applications of the electronic devices it is very challenging as well as uneconomical to replace traditional batteries from the electronic systems. Piezoelectric energy harvester (PEH) may be used to power the small electronic devices but the major limitation of a PEH is generation of sufficient amount of energy essential for the autonomous operation of the portable electronics over the wide range of environmental vibration frequencies.

Energy harvesters based on piezoelectric effect have attracted great research interest as the energy conversion efficiencies of piezoelectric materials are higher than those of electrostatic or electromagnetic materials. But linear PEH scavenge limited amount of power just near the resonance frequencies that rendered the linear PEHs useless in practical environmental vibration conditions.

To overcome such complications, a Bistable Piezoelectric Energy Harvester has been proposed. The harvester has been modeled using Finite Element Method. To harvest the energy over the wide frequency range of environmental vibrations nonlinearity is introduced in the stiffness by mean of two neodymium magnets. Originally triangular cross-section varying width PEH has been considered. Later it has been converted in to varying width PEH with three rectangular sections along length using block pulse functions (BPFs). The use of BPFs enable the use of rectangular patches of PZT-5A. This leads to the reduction in cost as machining PZT other than rectangular patches results in extensive increase in production cost. The varying width piezoelectric cantilever beam is subjected to harmonic base excitation by applying vertical acceleration of 0.2g (g = 9.81 ms⁻²). Numerical study indicates that bistable varying width PEH generates at least two times the average power as generated by nonlinear bistable uniform width PEH for same volume of piezoelectric material and for the same linear natural frequency. From the study it has been established that varying width bistable PEH is more efficient than the rectangular bistable PEH and can be implemented in autonomous operation of portable electronic circuits. Further the bistable varying width PEH is optimized using genetic algorithm technique to maximize mean power density. The proposed varying width bistable PEH is used to power to wireless mouse.

Keywords: Piezoelectric energy harvesting, Finite Element Method, Block Pulse Functions, Vibration, Genetic algorithm.

I would like to offer my sincerest gratitude to my thesis advisors, Dr. Rajeev Kumar and Dr. Vishal Singh Chauhan, for giving me detailed guidance and innovative inputs to my research project and for guidance and encouragements throughout this work. I am extremely thankful to Dr. Rajeev Kumar for his support and the direction that he has provided to this work from the beginning.

Besides my advisors, I would like to thank my thesis defence committee members for their kind coordination and valuable time. There are also a group of people in our department who provided generous help in the course of my M.S program. I would like to give special thanks to Mr. Shivendra Sanger and Mr. Vishrut Shah for their assistance regarding various issues.

I am ever grateful to my parents for their constant love and confidence in me. My most heartfelt gratitude goes to my wife Preeti. She has been always supportive, and understanding.

Finally, Thanks to almighty God.

viii

Title	Page
DECLARATION	i
CERTIFICATE	iii
ABSTRACT	V
ACKNOWLEDGEMENTS CONTENTS	vii ix
LIST OF FIGURES	xiii
LIST OF TABLES	xvii
NOMENCLATURE	xix
Chapter 1: INTRODUCTION	
1.1 Energy Harvesting	1
1.2 Electrostatic Energy Harvesting	4
1.3 Electromagnetic Energy Harvesting	5
1.4 Magnetostrictive Energy Harvesting	6
1.5 Piezoelectric Energy Harvesting	7
Chapter 2: FUNDAMENTALS AND LITERATURE REVIEW	
2.1 Introduction	11
2.2 Piezoelectricity	11
2.2.1 The piezoelectric effect	12
2.2.2 Mathematical formulation of piezoelectric effect	16
2.2.3 Piezoelectric Contribution to Elastic Constants	17
2.2.4 Piezoelectric Contribution to Dielectric Constants	18
2.2.5 The Electric Displacement and the Internal Stress	18
2.3 Modes of piezoelectric energy harvesting	19
2.4 Basic configurations in piezoelectric energy harvesting	20

2.4.1 Piezoelectric stack devices	20
2.4.2 Piezoelectric cantilever bender devices	21
2.4.2.1 Unimorph cantilever	22
2.4.2.2. Bimorph cantilever	22
2.4.2.3 Multimorph cantilever	24
2.5 Source of piezoelectric energy harvesting	24
2.5.1 Quasi-static excitation	24
2.5.2 Harmonic excitation	25
2.5.3 Impulsive excitations	25
2.6 Literature review on piezoelectric energy harvester	26
2.6.1 Linear piezoelectric energy harvesters	26
2.6.2 Nonlinear piezoelectric energy harvesters.	32
2.6.3 Literature review for optimization	34
2.7 Thesis objective	36
2.8 Organization of thesis	36
Chapter 3: FINITE ELEMENT MODELING OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER	
3.1 Introduction	39
3.1.1 Bistable piezoelectric energy harvester	39
3.1.2 Magnetic force (F _{mag})	41
3.2 Schematic of bistable piezoelectric energy harvester	42
3.2.1 Block Pulse Functions (BPFs)	44
3.3 Finite element formulation for bistable PEH	45
3.4 Configuration of energy harvesters	55
3.4.1 Unimorph energy harvesting	56

3.4.2 Bimorph energy harvesting	56
3.4.2.1 Parallel connection	56
3.4.2.2 Series connection	57
3.5 Power output optimization	58
Chapter 4: VALIDATION	
4.1 Introduction	61
4.2 Validation of electromechanical model of PEH	61
4.3 Validation of magnetic force	63
4.4 Validation of genetic algorithm code	64
Chapter 5: DESIGN AND OPTIMIZATION OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER 5.1 Introduction	69
5.2 Selection of design parameters	70
5.3 Analysis of rectangular bistable PEH	72
5.4 Analysis of varying width bistable PEH	77
5.5 Optimization of varying width bistable PEH using Genetic Algorithm.	82
Chapter 6: APPLICATION OF VARYING WIDTH BISTABLE PIEZOELECTRIC ENERGY HARVESTER	
6.1 Introduction	85
6.2 Design objectives / requirements	86
6.3 Analysis of self-powered mouse.	88
CONCLUSIONS	91
REFERENCE	93
LIST OF PUBLICATION	107

xii