Emerging Two-Dimensional Materials and Their van der Waals Heterostructures: Chemical Exfoliation to Device Applications

A Thesis

submitted by

Abdus Salam Sarkar (Roll No. D12065)

for the award of the degree

of

Doctor of Philosophy

School of Basic Sciences

Indian Institute of Technology Mandi

Kamand, Himachal Pradesh-175005, India

February, 2018

Dedicated

To

My Parents

www.iitmandi.ac.in

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this Thesis is the result of investigations carried out by me in the *School of Basic Sciences*, Indian Institute of Technology Mandi, under the supervision of *Dr. Suman Kalyan Pal*, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place:

Signature:

Date:

Name: Abdus Salam Sarkar

www.iitmandi.ac.in

Declaration by the Research Advisor

I hereby certify that the entire work in this Thesis has been carried out by *Abdus Salam Sarkar* under my supervision in the *School of Basic Sciences*, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma.

Signature:

Signature:

Name of the Guide: Dr. Suman Kalyan Pal

Name of the Co-Guide (if any):

Date:

Date:

Acknowledgement

In the name of Allah, the Most Gracious and the Most Merciful

[All praise to Allah for the strength and His blessing in helping me to complete this thesis]

Within this short acknowledgement, I wish to warmly thank to all who have contributed to the successful completion of this work and who have encouraged me and provided me inspiration, guidance, support and motivation in each and every situation. I do afraid that I might have forgotten some people for that I sincerely apologize.

Foremost, I would like to express my sincere gratitude to my supervisor **Dr. Suman Kalyan Pal** for giving me an opportunity to do such decent work in his wonderful group, for his endless creativity in solving any problem, for his outstanding openness to interesting new ideas. I have been very fortunate to have an advisor who gave me not only guidance to conduct research, but also given the freedom to explore on my own. His enthusiasm and commitment, and the genuine concern and empathy he has for his students is really great. He has been friendly, supportive, and motivating throughout my Ph.D. It has been a great enjoyable experience working under his supervision.

I extend my thanks to doctoral committee members, Dr. Prashant P Josh, Dr. Subrata Ghosh, Dr. Pradyuman K Pathak, and Dr. Bharat Singh Rajpurohit for their valuable suggestions.

I express my sincere thanks to Prof. T. A. Gonsalves, the Director, IIT Mandi, for his support. The research facilities at Advanced Materials Research Centre (AMRC), IIT Mandi are greatly acknowledged.

I would like to thank the staff members of mechanical workshop and AMRC, Mr. Dushyant, Mr. Puneet, and Mr. Akshay, for treating me more like a friend than a mere

student. Special thanks to Dr. Pawan and Mr. Palit for their effort to collect such clear AFM images. Thanks to Mr. Arjun for patiently finding the 2D sheets and capturing the HR-TEM images.

It was a great experience to work in Indian Institute of Science (IISC) Bangalore. Thanks to Prof. Praveen C. Ramamurthy, Dr. Arun, and Mr. Jagdish, for helping me to fabricate and characterize the solar photovoltaics. Special thanks to Dr. Suresh Chand (emeritus scientist), Dr. Vinay Gupta, and Dr. Rajiv Singh, Physics of Energy Harvesting, National Physical Laboratory (NPL), Delhi, for providing me the in-hand device fabrication training facility at my initial stage.

Next, I would like to extend my thanks to Dr. Aman Pal Singh, Dr. Viswanath, and Dr. Satya for encouraging me. A very special thanks to Dr. Anjali Sharma, who has played an instrumental role in my life.

I have to give a big "thanks" to my group members, Dr. Pushpendra Kumar, Dr. Dushyant Kushavah, Mr. Aswani Thakur, Mr. Supriya Ghosh, Mr. Nagaraju Nakka, Mr. Aamir Mushtaq, Mr. Rajeev Ray, Ms. Anchala, and Ms. Anita for providing a healthy research environment and discussion in group meeting every weekend.

My special thanks to my friends Gourav Dey, Ramkrishana, Dr. Robin, Dr. Sohan Lal, Dr. Sunil Kumar, Dr. Sougata, Dr. Sunil Dutt, Dr. Rajkumar, Dr. Abhishek, Dr. Reena, Dr. Manisha, Dr. Rambabu, Dr. Pankaj, Dr. Subhashis, Manoj, Harman, Afsal, Guruprasad, Shivani, Mahesh, Moinuddin, Mohit, Surender, Birender, Karan, Somnath, Juhi, Imran, Fauzul, Vikash, Tripti, Adil, Shilpa, Deepika, Anudita, Rohit, Lingeswar, Venky, Santu, Sanket, Pawan, Saquib, Srimanta, Syamantak, Navneet, and many more...... for their support and encouragement. Next, I would like to pay tribute to my teachers, Mr. Manish Chakladar, Mr. Pranab Sarkar, Mr. Anitosh Sarkar, Bikash Deb, Mr. Firajul Islam, Mr. Mokshed Ahmed and Mr. Bijay Goswami for teaching me the best thing in my life.

Last but not the least, I offer my deepest gratitude from the bottom of my heart to all my family members and relatives for their patience, love, and care. I thank my parents for their support, encouragement, endless love, and the compromise they made, to give me the best possible education. I owe all my achievement and I thank to The Almighty Allah for blessing me with such wonderful parents and friends.

Date:

(Abdus Salam Sarkar)

School of Basic Sciences Indian Institute of Technology Mandi

Mandi, Himachal Pradesh, India-175005

PUBLICATIONS

1. **A. S. Sarkar** and S. K. Pal, Exponentially Distributed Trap-Controlled Space Charge Limited Conduction in Graphene Oxide Films, *J. Phys. D: Appl. Phys.*, 2015, 48, 445501.

 V. Kalyani, V. S. V. Satyanarayana, A. S. Sarkar, A. Kumar, S. K. Pal, S. Ghosh, K.
E. Gonsalves, and C. P. Pradeep, Radiation Sensitive Hybrid Polymer Based on Mn-Anderson Polyoxometalate Cluster and a UV Active Organic Monomer: Synergistic Effects Lead to Improved Photocurrent in Photoresponse Device, *RSC Adv.*, 2015, 5, 36727-36731. (Communication)

3. A. S. Sarkar, V. Kalyani, K. E. Gonsalves, C. P. Pradeep and S. K. Pal, Ion mediated Charge Carrier Transport in a Novel Radiation Sensitive Polyoxometalate-Polymer Hybrid, *RSC Adv.*, 2016, 6, 44838. (*Communication*)

4. S. Ghosh, M. Ghosh, P. Kumar, A. S. Sarkar, S. K. Pal, Quenching of the Excitonic Emission of ZnO Quantum Dots Due to Auger-Assisted Hole Transfer to CdS Quantum Dots, *J. Phys. Chem. C*, 2016, 120, 27717-27723.

5. **A. S. Sarkar** and S. K. Pal, Electron-Phonon Interaction in Organic/2D-Transition Metal Dichalcogenide Heterojunctions: A Temperature Dependent Raman Spectroscopic Study, *ACS Omega*, 2017, 2, 4333-4340.

6. A. Mushtaq, S. Ghosh, A. S. Sarkar and S. K. Pal, Multiple Exciton Harvesting at Zero-Dimensional/Two-Dimensional Heterostructures, *ACS Energy Lett.*, 2017, 2, 1879-1885.

7. A. S. Sarkar and S. K. Pal, A van der Waals p-n Heterojunction Based on Polymer-2D Layered MoS₂ for Solution Processable Electronics, *J. Phys. Chem. C*, 2017, 121, 21945-21954. A. S. Sarkar, A. D Rao, A. K. Jagdish, A. Gupta, C. K. Nandi, P. C Ramamurthy and
S. K. Pal, Facile Embedding of Gold Nanostructures in the Hole Transporting Layer for
Efficient Polymer Solar Cells, *Org. Electron.*, 2018, 54, 148-153.

9. Q. Shi, S. Ghosh, A. S. Sarkar, P. Kumar, Z. Wang, S. K. Pal, T. Pullerits, and K. J. Karki, Variation in the Photocurrent Response due to Different Emissive States in Methylammonium Lead Bromide Perovskites, *J. Phys. Chem. C*, 2018, 122, 3818-3823.

10. **A. S. Sarkar** and S. K. Pal, Phonon Shift in Chemically Exfoliated WS₂ Nanosheet, *AIP Conf. Proc. (Accepted).*

11. **A. S. Sarkar** and S. K. Pal, Emerging Two Dimensional SnS: Exfoliation to Phonon Properties, (Manuscript).

12. S. Dutt, T. Vats, A. S. Sarkar, S. K. Pal and P. F. Siril, Enhancing the Electrical Properties of Polyaniline-Pristine Graphene Nanocomposites using a Novel Synthetic Route Employing Swollen Liquid Crystal Templates, (Manuscript).

Contents

1	General Introduction	1
	1.1. Two-dimensional (2D) layered materials: history and overview	1
	1.2. Graphene family	2
	1.3. 2D layered chalcogenides	6
	1.3.1. Transition metal dichalcogenides (TMDs)	6
	1.3.2. Metal monochalcogenides (MMs)	11
	1.4. Heterostructures of layered transition metal chalcogenides	11
	1.5. Charge carrier transports in disorder semiconductors	15
	1.6. Organic solar cells	22
	1.7. Importance of this thesis in the context of current senario of the research	
	on 2D layered materials and their device applications	26
	1.8. Scope of the thesis	31
2	Materials and Methods	45
	2.1. Introduction	45
	2.2. Material preparation	45
	2.2.1. Modified Hummer's method	46
	2.2.2. Liquid phase exfoliation	47
	2.3. Experimental techniques	48

	2.3.1. Optical spectroscopy	48
	2.3.1.1. Absorption	48
	2.3.1.2. Photoluminescence	50
	2.3.1.3. Time resolved photoluminescence	50
	2.3.2. Raman spectroscopy	52
	2.3.3. Microscopy	54
	2.3.3.1. Confocal microscopy	54
	2.3.3.2. Electron microscopy	55
	2.3.3.3. Atomic force microscopy	60
	2.3.4. Device fabrication	62
	2.3.5. Temperature dependent I-V measurements	63
	2.3.6. Electrical characterization of solar cells	64
3	Trap-Controlled Electrical Conduction in Graphene Oxide Films	70
	3.1. Abstract	70
	3.2. Introduction	70
	3.3. Materials and chemicals	72
	3.4. Results and discussions	72
	3.4.1. Microscopic and spectroscopic analysis	72
	3.4.2. Electrical transport property	73
	3.5. Conclusions	79

	Solar Cells	82
	4.1. Abstract	82
	4.2. Introduction	82
	4.3. Materials and methods	85
	4.4. Results and discussion	86
	4.4.1. Morphology and optical property of AuNS loaded GO films	86
	4.4.2. Performance enhancement of PSCs using GO:AuNSs as a HTL	89
	4.4.3. Improved light absorption and charge collection in the presence	
	of AuNSs	90
	4.5. Conclusions	93
5	Nanoscale Polymer-2D MoS ₂ Heterojunctions for Electronic Device	
	Applications	98
	5.1. Abstract	98
	5.2. Introduction	99
	5.3. Materials	101
	5.4. Results and discussion	101
	5.4.1. Preparation of PG-MoS ₂ nanoheterostructures	101
	5.4.2. Polymer-MoS ₂ bulk heterostructures	102
	5.4.3. Photocarrier generation in PG-MoS ₂ nanoheterostructures via exciton	

4 Plasmonic Modified Graphene Oxide as an Interface Layer in Polymer

	dissociation	108
	5.4.4. Photovoltaic activity of PG-MoS ₂ nanoheterostructures	112
	5.4.5. Bipolar switching effect in PG-MoS ₂ heterostructures	114
	5.5. Conclusions	118
6	Electron-Phonon Interaction in Organic-2D Transition Metal Dichalcogenides	
	Heterojunctions	122
	6.1. Abstract	122
	6.2. Introduction	123
	6.3. Materials	126
	6.3.1. Preparation of MoS ₂ and MoSe ₂ nanoheterojunctions	126
	6.4. Results and discussion	127
	6.5. Conclusions	136
7	Large Area Ultrathin Tin (II) Monosulfide (SnS): Synthesis and Raman	
	Spectroscopic Study	140
	1.1. Abstract	140
	1.2. Introduction	140
	1.3. Materials	143
	1.4. Results and discussion	143
	7.4.1. Liquid phase exfoliation of SnS nanosheets	143
	7.4.2. Microscopic and spectroscopic characterization	144

8	Conclusion and Prospect	160
	7.5. Conclusions	155
	7.4.3. Temperature dependent Raman spectroscopy	149