NUMERICAL AND EXPERIMENTAL STUDY OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER

A Thesis

Submitted

By

VISHRUT SHAH (Roll No. S14007)

For the award of degree of

Master of Science (by research)

SCHOOL OF ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY MANDI Mandi, Himachal Pradesh -175005

NOVEMBER, 2016

Indian Institute of Technology, Mandi Mandi, Himachal Pradesh - 175005

भारतीय प्रौद्योगिकी संस्थान, मण्डी मण्डी, हिमाचल प्रदेश - 175005

Declaration by the Research Scholar

This is to certify that the thesis titled "**Numerical and Experimental study of Bistable Piezoelectric Energy Harvester**" submitted by me, to the Indian Institute of Technology Mandi for the award of the degree of **Master of Science (by research)**, is a bonafide record of the research work carried out by me in the School of Engineering, Indian Institute of Technology Mandi, under the supervision of Dr. Mohammad Talha and Dr. Rajeev Kumar. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

I.I.T. Mandi (H.P.) Date: Nov 09, 2016 Indian Institute of Pechnology Vishrut Shah

भारतीय प्रौद्योगिकी संस्थान, मण्डी

Indian Institute of Technology, Mandi

Thesis Certificate

This is to certify that the thesis titled "**Numerical and Experimental Study of Bistable Piezoelectric Energy Harvester**" submitted by **Vishrut Shah**, to the Indian Institute of Technology Mandi for the award of the degree of **Master of Science (by research)**, is a bonafide record of the research work done by him under our supervision in the School of Engineering, Indian Institute of Technology Mandi. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Dr. Mohammad Talha Assistant Professor School of Engineering IIT Mandi

Date: Nov 09, 2016

Dr. Rajeev Kumar Associate Professor School of Engineering IIT Mandi Date: Nov 09, 2016

ABSTRACT

Enormous research is going on to reduce the size of portable electronic appliances and the use of self-contained power source is required to make more powerful and lightweight electronic devices without traditional batteries. Moreover for remote applications of the electronic devices it is very challenging as well as uneconomical to replace traditional batteries from the electronic systems. Piezoelectric energy harvester (PEH) may be used to power the small electronic devices but the major limitation of a PEH is generation of sufficient amount of energy essential for the autonomous operation of the portable electronics over the wide range of environmental vibration frequencies. Energy harvesters based on piezoelectric effect have attracted great research interest as the energy conversion efficiencies of piezoelectric materials are higher than those of electrostatic or electromagnetic materials. But linear PEH scavenge limited amount of power just near the resonance frequencies that rendered the linear PEHs useless in practical environmental vibration conditions.

To overcome such complications, a Bistable Piezoelectric Energy Harvester has been proposed. To harvest the energy over the wide frequency range of environmental vibrations nonlinearity is introduced in the stiffness by mean of two neodymium magnets. The harvester has been modeled using Finite Element Method and validated with experimental study. The experimental results suggests that the efficiency of the bistable PEH is almost twice than that of its linear counterpart. The power reported in case of bistable system is 100% higher than the cantilever-type energy harvester and also significant over the wide frequency range.

The performance of various piezoelectric materials in bistable configuration is also studied. The numerical simulation demonstrates that lead-free piezoelectric material family K_{0.5}Na_{0.5}NbO₃-LiSbO₃ (KNN-LS) exhibits better performance than the conventional lead-based piezoelectric

material lead zirconate titanate (PZT). ZnO based nanogenerator is also studied. The complexity in the problem arises due to the existence of semiconducting properties along with the piezoelectric properties in ZnO nanowires. The developed model provides fairly accurate results when compared with the literature.

Keywords: Piezoelectric energy harvesting, Finite Element Method, Lead free Materials, Vibration, ZnO nanowire.

I would like to offer my sincerest gratitude to my thesis advisors, Dr. Mohammad Talha and Dr. Rajeev Kumar, for giving me detailed guidance and innovative inputs to my research project and for guidance and encouragements throughout this work.

I am extremely thankful to Dr. Rajeev Kumar for his support and the direction that he has provided to this work from the beginning.

Besides my advisors, I would like to thank my thesis defence committee members for their kind coordination and valuable time. There are also a group of people in our school who provided generous help in the course of my M.S program. I would like to give special thanks to Mr. Tarun Kumar and Mr. Anuruddh Kumar for their assistance regarding various issues.

I am ever grateful to my parents for their constant love and confidence in me.

Finally, Thanks to almighty God.

CONTENTS

Title	Page
DECLARATION	i
CERTIFICATE	iii
ABSTRACT	V
ACKNOWLEDGEMENTS	vii
CONTENTS	ix
LIST OF FIGURES	xiii
LIST OF TABLES	xvii
NOMENCLATURE	xix
Chapter 1: INTRODUCTION	
1.1 Energy Harvesting	1
1.2 Piezoelectricity	2
1.2.1 The piezoelectric effect	2
1.2.2 Mathematical formulation of piezoelectric effect	3
Chapter 2: FUNDAMENTALS AND LITERATURE REVIEW	
2.1 Introduction	9
2.2 Piezoelectricity	9
2.2.1 The piezoelectric effect	10
2.2.2 Mathematical formulation of piezoelectric effect	14
2.2.3 Piezoelectric Contribution to Elastic Constants	15
2.2.4 Piezoelectric Contribution to Dielectric Constants	16
2.2.5 The Electric Displacement and the Internal Stress	16
2.3 Modes of piezoelectric energy harvesting	17
2.4 Classification of Piezoelectric Vibration Energy Harvesting Techniques	18

2.4.1 Narrowband Energy Harvesters	19
2.4.2 Broadband Energy Harvesting	20
2.5 Thesis objective	28
2.6 Organization of thesis	28
Chapter 3: FINITE ELEMENT MODELING OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER	
3.1 Introduction	31
3.1.1 Bistable piezoelectric energy harvester	31
3.1.2 Magnetic force (F _{mag})	34
3.2 Schematic of bistable piezoelectric energy harvester	35
3.3 Finite element formulation for bistable PEH	36
3.4 Configuration of energy harvesters	47
3.4.1 Unimorph energy harvesting	47
3.4.2 Bimorph energy harvesting	48
Chapter 4: EXPERIMENTAL STUDY OF BISTABLE PIEZOELECTRIC ENERGY HARVESTER	
4.1 Experimental Setup	51
4.2 Results and Discussion	53
4.2.1 Determination of Bistable Point	56
4.2.2 Voltage and Power Calculation	59
4.2.3 Battery Charging results	62
4.2.4 Efficiency of Bistable Piezoelectric Energy Harvester	64
Chapter 5: PERFORMANCE EVALUATION OF VARIOUS	

PIEZOELECTRIC ENERGY HARVESTER

5.1 Materials	65
5.2 Results and Discussion	66
5.3 Conclusions	71
Chapter 6: MODELING OF ZnO BASED PIEZOELECTRIC ENERGY HARVESTER	
6.1 Introduction	73
6.2 Theoretical Background	75
6.2.1 Screening Effect	76
6.3 Results and Discussion	77
6.4 Determination of Maximum Power	79
CONCLUSIONS	83
REFERENCE	85
LIST OF PUBLICATION	91