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ABSTRACT

Keywords: Super resolution, sparse representation, edge preservation, depth map, range
image, point cloud completion, sampling, dictionary, clustering, edge orientation, principal
component analysis, image details, image pyramid, additive noise, singular value decompo-

sition, non-local similarity, distant face recognition, edginess.

Super resolution (SR) aims to restore an approximated version of the original high res-
olution (HR) scene from the given low resolution (LR) image. As there could be different
possibilities of HR scenes that can produce the same LR image, the process of SR is ill-
posed in nature. In order to achieve an HR image, the inverse problem has to be regularized
with prior knowledge about the HR image. Sparsity inducing norm can be used to address
the regularization issue, but it can not take care about preserving edges, which are perceptu-
ally important in any image. To mitigate with this concern, we propose an edge preserving
constraint that preserves the edges of the input image in the SR result in the framework of
sparse representation. This constraint is useful to improve the quality of the result of SR
for intensity images, and is further investigated for range image (or depth map). It is found
that the edge preserving SR is well suited for this modality. This is because the resolution
enhancement of range images is primarily gauged in terms of retention of object shape and
inter-object discontinuities. Further, we address the issues of higher up-sampling as well
as non-uniform up-sampling requirement for depth map. The non-uniform up-sampling re-
quirement is caused by the sparse point cloud that is generated from structure from motion
part in the pipeline of depth estimation. The sparse point cloud can be interpreted as a non-
uniformly sampled LR depth map. To up-sample the non-uniformly sampled LR depth map,
we generalize the SR framework using a mask operator. Here, the missing depths at HR grid
is filled using the dictionary of exemplars in sparse domain.

Dictionary plays an important role in the sparsity based SR. Often, the dictionary is
learned using either structural information (dominant edge orientation) or statistical infor-
mation (mean of intensity values) of image patches. The complimentary nature of both kind
of information has not been explored, and an approach is proposed to address the same us-

ing example patches. The example patches are first clustered based on their dominant edge

v



orientation to generate structurally similar clusters, which may vary statistically. Hence, the
structurally similar clusters are further divided using K-means clustering to generate clus-
ters that consist of structurally as well as statistically similar patches. This kind of clustering
strategy can produce dictionaries that can represent the target patch appropriately. Availabil-
ity of good HR example image patches are very important to learn the dictionaries. If the
example patches are unavailable, one has to explore the information available in the given
LR image. Thus, we construct image pyramid by up/down-sampling the given LR image,
and patches from the pyramids can be used to learn dictionary. Further, we choose the image
patch details for SR, as it contains perceptually significant information. Here, image patch
details is computed by subtracting the patch from the non-local mean of similar patches. If
the given LR image is contaminated by noise, considering patch detail for SR will empha-
size the noise also. To mitigate with this issue, we derive few parameters from the given
LR image that reflects the strength of noise present in the image. These parameters are
used: i) to derive a threshold that is employed in the sparse coding stage using iterative
shrinkage/thresholding algorithm, and ii) to choose between the noise suppressing non-local
mean component and the detail component. By enhancing suitable component using iter-
ative thresholding algorithm, we are able to suppress noise while super-resolving a single
image. Hence, we do not require the strength and type of additive noise in super-resolving
a noisy LR image. Further, the problem of distant face recognition is addressed by an edge
based SR strategy, where edge information is employed either explicitly by super-resolving
edge related information or implicitly by preserving edges using a constraint in SR of gray

scale face image.
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