Morphology controlled synthesis of polyaniline nanostructures and its nanocomposites

using swollen liquid crystals as templates

A Thesis

submitted

by

Sunil Dutt

(Roll No: D10008)

for the award of the degree of

Doctor of Philosophy

School of Basic Sciences

Indian Institute of Technology Mandi

Mandi, Himachal Pradesh-175005

July, 2015

Affectionately

Dedicated

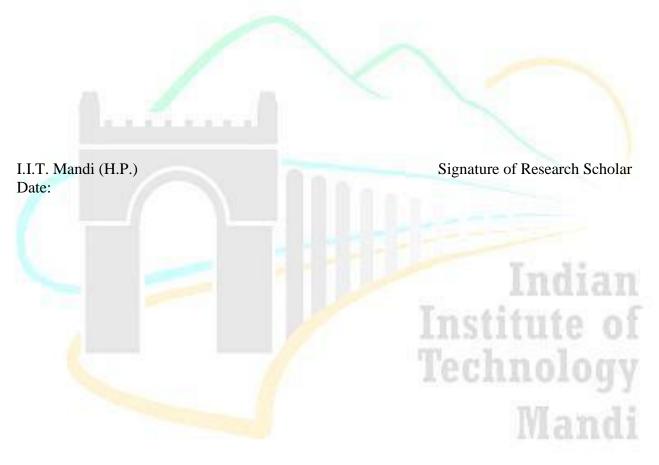
To

Almighty God

My

loving family

Indian Institute of Technology Mandi, Mandi, Himachal Pradesh - 175005



भारतीय प्रौद्योगिकी संस्थान मण्डी, मण्डी, हिमाचल प्रदेश - 175005

Declaration

All the corrections suggested by referees have been made and provided as addendum at the end

of this thesis.

Indian Institute of Technology Mandi, V.P.O. Kamand, Tehsil Sadar, Near Kataula, Parashar Road, Mandi, Himachal Pradesh 175005. Telephone No. 01905-237927, Fax: 01905-237942, Email: prem@iitmandi.ac.in

Indian Institute of Technology Mandi, Mandi, Himachal Pradesh - 175005

Declaration by the Research Scholar

This is to certify that the thesis entitled "**Morphology controlled synthesis of polyaniline nanostructures and its nanocomposites using swollen liquid crystals as templates**", submitted by me to the Indian Institute of Technology Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by me under the supervision of Dr. Prem Felix Siril. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

Indian Institute of Technology Mandi, Mandi, Himachal Pradesh - 175005

titute

Tech

Research Guide

Mand

Thesis Certificate

This is to certify that the thesis entitled "**Morphology controlled synthesis of polyaniline nanostructures and its nanocomposites using swollen liquid crystals as templates**", submitted by Mr. Sunil Dutt to the Indian Institute of Technology Mandi for the award of the degree of Doctor of Philosophy is a bonafide record of research work carried out by him under my supervision. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

In keeping with the general practice of reporting scientific observation, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

Indian Institute of Technology Mandi, V.P.O. Kamand, Tehsil Sadar, Near Kataula, Parashar Road, Mandi, Himachal Pradesh 175005. Telephone No. 01905-237927, Fax: 01905-237942, Email: prem@iitmandi.ac.in

Acknowledgements

While pursuing my PhD degree, many seen and unseen hands pushed me forward, soul put me on the right path and enlightened me with their knowledge and experience. I shall remain grateful to all of them. I enjoyed this learning journey as a researcher.

First of all, I would like to express my deep gratitude and profound indebtedness to my PhD advisor Dr. Prem Felix Siril for his dexterous guidance, invaluable suggestions and perceptive enthusiasm which enabled me to accomplish the task of undertaking the present study. He sets an example of a world-class researcher for his passion on research. His wide knowledge and logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance provided me a good basis for the present thesis.

I express my sincere thanks to The Director, IIT Mandi for his support and encouragement. The research facility at Advanced Materials Research Center (AMRC), IIT Mandi is also gratefully acknowledged hereby.

My sincere thanks to all chemistry faculty members for their invaluable advice and encouragement during course work as well as research work.

I am also very much thankful to my research group members for their invaluable support and help during my research work.

I would like to thanks to all my friends for their continuous support and encouragement.

My earnest thanks are due to AMRC staff for their assistance in lab.

A special words of thanks to my loving wife Kanchan for her continuous inspiration, motivation and cooperation.

i

I express profound sense of reverence to my parents for their untiring support and cooperation.

I can never forget cooperation, endless tolerance and constant encouragement from all my family members during this tough and happy moments of the journey.

Above all, all the praise is due to the Almighty God, the ultimate source of knowledge, a part of which He reveals to man and peace be upon all his Messengers throughout the world for success and guidance of mankind. I express my gratitude and indebtedness to the Almighty for countless blessings.

Table of Contents

Acknowledgements	i
Abbreviations	x
Abstract	xiii

Chapter 1 Intrinsically conducting polymers, polyaniline and swollen liquid crystals: An overview

1.1. Intrinsically conducting polymers and polyaniline: An overview1
1.1.1. Different types of ICPs2
1.1.2. Conduction mechanism of ICPs
1.1.2.1. Band theory
1.1.2.2. Polaron and bipolaron models
1.2. Polyaniline
1.2.1. Chemical structure of polyaniline
1.2.2. Different methods for the synthesis of polyaniline
1.2.2.1. Electrochemical method of polymerization
1.2.2.2. Chemical method of polymerization
1.2.3. Mechanism of oxidative polymerization of aniline
1.2.4. Doping of PANI
1.2.5. Different polyaniline nanostructures and its nanocomposites
1.2.5.1. General methods for the synthesis of PANI nanostructures and its
nanocomposites11
1.2.5.2. PANI nanoparticles (PANI-NPs)
1.2.5.3. One dimensional PANI nanostructures

1.2.6. PANI nanocomposites	16
1.2.7. Applications of polyaniline nanostructures and its nanocomposites	
1.2.7.1. Sensing applications.	17
1.2.7.2. Energy storage applications	17
1.2.7.3. Microwave absorption	18
1.2.7.4. Environment remediation by adsorbing pollutants	18
1.2.7.5. Surface enhanced Raman spectroscopy (SERS)	19
1.2.7.6. Catalytic applications	19
1.2.7.7. Fuel cell catalysts	20
1.2.7.8. Batteries	20
1.2.7.9. Solar cells	21
1.2.7.10. Electronics	21
1.3. Surfactants and their self-assembly	22
1.3.1. Lyotropic liquid crystals (LLCs) or mesophases	24
1.3.2. Swollen liquid crystals (SLCs)	24
1.3.2.1. Stability of SLCs against change in chemical nature of the salts, i of chemicals and materials, pH of the medium and temperature	
1.3.2.2. Characterization of SLCs	
1.3.3. Applications of SLCs as soft templates	
1.3.3.1. Noble metal nanostructures	31
1.3.3.1.1. Chemical reduction method	32
1.3.3.1.2. Radiolytic and photolytic reduction methods	33
1.3.3.1.2.1. Palladium nanostructures	34

1.3.3.1.2.2. Platinum nanostructures
1.3.3.2. Bimetallic nanostructures 36
1.3.3.3. Oxide nanostructures
1.3.3.4. Polymer nanostructures 37
References
Chapter 2 Synthesis of polyaniline nanostructures by confining aniline in the oil phase of swollen liquid crystals
Abstract
2.1. Introduction
2.2. Experimental section
2.2.1. Materials
2.2.2. Synthesis of different PANI nanostructures and bulk-PANI
2.2.3. Fabrication of biosensor
2.3. Results and discussion
2.3.1. Physico-chemical characterization
2.3.2. Possible mechanism
2.4. Electrochemical sensing of hydrogen peroxide and glucose
2.5. Conclusions
References

Chapter 3 Synthesis of polyaniline nanostructures from aniline that was entrapped in the aqueous phase of swollen liquid crystals

Abstract

3.1. Introduction	74
3.2. Experimental section	
3.2.1. Materials	75
3.2.2. Synthesis of different PANI nanostructures	75
3.3. Results and discussion	76
3.4. Conclusions	80
References	81
Chapter 4 Gold(core)-Polyaniline(shell) composite nanowires for SER applications	S and catalytic
Abstract	83
4.1. Introduction	83
4.2. Experimental section	
4.2.1. Materials	85
4.2.2. Preparation of the mesophases and Aucore-PANIshell nanocomposite	e85
4.2.3. SERS experiments	86
4.2.4. Dye reduction studies	86
4.3. Results and discussion	87
4.3.1. Characterization of the nanocomposite	
4.3.1.1. UV-visible absorption spectroscopy	88
4.3.1.2. FTIR spectroscopy	89
4.3.1.3. TEM imaging and EDS analysis	90
4.3.1.4. XPS spectroscopy	

4.3.2. Mechanism of formation of the nanocomposite	
4.3.3. SERS studies	96
4.3.4. Catalytic activity for dye reduction	99
4.4. Conclusions	
References	103

Chapter 5 Controlling the morphology of polyaniline-platinum nanocomposites using swollen liquid crystal templates

Abstract
5.1. Introduction107
5.2. Experimental section
5.2.1. Materials108
5.2.2. Methods of preparation
5.2.2.1. Bulk-PANI and SLCs doped with aniline, aniline hydrochloride and
hydrogen hexachloro palatinate109
5.2.2.2. PANI-Pt nanocomposites
5.2.3. Instrumentation110
5.3. Results and discussion
5.4. Mechanism of nanocomposite formation124
5.5. Conclusions
References

crystals as soft template
Abstract
6.1. Introduction
6.2. Materials and methods
6.2.1. Materials
6.2.2. Methods
6.2.3. Dye adsorption studies
6.3. Results and discussion
6.3.1. Physico-chemical characterization
6.3.2. Mechanism of nanocomposite formation145
6.3.3. Initial adsorption kinetics of cationic and anionic dyes onto PANI-Fe ₃ O ₄
nanocomposites using UV-visible absorption spectroscopy147
6.4. Conclusions
References
Chapter 7 Synthesis of polyaniline-pristine graphene nanocomposites using swollen liquid crystal template
Abstract
7.1. Introduction
7.2. Experimental section
7.2.1. Materials
7.2.2. Methods
7.2.2.1. Preparation of exfoliated graphene

Chapter 6 Facile synthesis of polyaniline-ironoxide nanocomposites using swollen liquid crystals as soft template

7.2.2.2. Preparations of different SLCs containing (a) aniline and graphene and
(b) aniline hydrochloride and graphene and synthesis of PANI-G
nanocomposites156
7.3. Results and discussion
7.3.1. UV-visible absorption spectroscopy158
7.3.2. FTIR spectroscopy159
7.3.3. XRD analysis
7.3.4. Raman spectroscopy161
7.3.5. FESEM and TEM imaging163
7.4. Conclusions
References
Chapter 8 Conclusions and future perspectives

	172
List of Publications	

Abbreviations

AA	Ascorbic acid
AFM	Atomic force microscopy
AN	Aniline
AN.HCl	Aniline hydrochloride
APS	Ammonium persulfate
Au-PANI	Gold-polyaniline
Au _{core}	Gold core
BCA	Butyl carbitol acetate
B-PANI or PANI-B	Bulk-polyaniline
СВ	Conduction band
CMC	Critical micelle concentration
CNTs	Carbon nanotubes
СРС	Cetylpyridinium chloride
CPBr	Cetylpyridinium bromide
cryo-TEM	cryo-Transmission electron microscopy
СТАВ	Cetyltrimethylammonium bromide
CTAC	Cetyltrimethylammonium chloride
CV	Cyclic voltammetry
DA	Dopamine
EC	Ethyl cellulose
EDOT	
EDX or EDS	Energy dispersive X-ray spectroscopy
EF	Enhancement factor
EMI	Electromagnetic interference
FE-SEM	Field emission-Scanning electron microscopy
	Fourier transform infrared spectroscopy
	Graphene

GOx	Glucose oxidase
HR-TEM	High resolution Transmission electron microscopy
ICPs	Intrinsically conducting polymers
IR	Infrared
LCs	Liquid crystals
LLCs	Lyotropic liquid crystals
MB	
MFM	
MWNTs	
NFs	Nanofibers
NMP	N-methyl pyrrolidone
NPs	Nano particles
PANI	Polyaniline
PANI- Fe ₃ O ₄	Polyaniline-iron oxide
PANI-G	Polyaniline-graphene
PANI-NPs	Polyaniline nanoparticles
PANI-NS	Polyaniline nanostructures
PANI-Pt	Polyaniline-platinum
PANI _{shell}	Polyaniline shell
PANI-0D	Spherical polyaniline
PANI-1D	One dimensional polyaniline
PBS	Phosphate buffered saline
PEDOT	Poly(3,4- ethylenedioxythiophene)
POM	Polarizing optical microscopy
РРу	Polypyrrole
PtNNs	Platinum nanonets
PtNBs	Platinum nanoballs
RB	Rose Bengal
Rh B	Rhodamine B
SAED	Selected area electron diffraction

SAXS	Small-angle X-ray scattering
SDS	Sodium dodecyl sulfate
SERS	Surface enhanced Raman spectroscopy
SLCs	Swollen liquid crystals
SPR	Surface plasmon resonance
SWNTs	Single walled carbon nanotubes
TEM	Transmission electron microscopy
TGA	
UA	Uric acid
UV	Ultra violet
VB	Valence band
Vis	Visible
XPS	X-ray photo electron spectroscopy
XRD	X-ray diffraction

Abstract

Polymers are generally known for their insulating properties. But intrinsically conducting polymers (*ICPs*) is the class of organic conjugated polymers that can conduct electricity. ICPs find promising applications in different fields such as in sensors, electronic devices, integrated circuits, catalysis, energy storage, memory devices etc. Polyaniline (PANI) is one of the most studied among the ICPs. PANI is more interesting due to its good environmental stability, ease of synthesis and controllable electrical conductivity through protonation/deprotonation. Properties of PANI can be tuned by nanostructuring and nanocomposite formation also and improved performance can be obtained. Exploration of novel methods for the synthesis of PANI nanostructures and the nanocomposites is thus an important research area and this is the major theme of the present thesis. Preparation of PANI nanostructures and their nanocomposites using swollen liquid crystals (SLCs) as 'soft' templates is presented in the thesis.

SLCs are a class of lyotropic liquid crystals that is usually formed from a mixture of water, oil, surfactant and co-surfactant. The aspects such as diameter of the micelles and the distance between them can be varied in SLCs and hence the name. It has been shown in the past that the SLCs can be used as versatile templates for the synthesis of a variety of noble metal nanostructures. A general method for preparing spherical and one dimensional nanostructures of PANI and its nanocomposites by using SLCs as templates has been developed and presented in the thesis. Controlling the morphology of PANI and its nanocomposites with Au, Pt, Fe₃O₄ and pristine graphene has been demonstrated using SLCs as templates in the present study. The prepared nanomaterials were thoroughly characterized using advanced characterization techniques. The PANI nanostructures and its nanocomposites were found to have interesting applications in sensing, catalysis and environmental remediation.

The present thesis entitled 'Morphology controlled synthesis of polyaniline nanostructures and its nanocomposites using swollen liquid crystals as templates' contains eight chapters. Chapter 1 provides an overview of ICPs, PANI, its nanostructures and nanocomposites, SLCs and their use as 'soft' templates. Chapter 2 describes an approach for the synthesis of PANI nanostructures by confining aniline in the oil phase of SLCs. Chapter 3 mainly focuses on the utility of the aqueous phase of SLCs for the synthesis of PANI nanostructures. Synthesis of Gold_{core}-Polyaniline_{shell} composite nanowires and their SERS and catalytic activities is described in chapter 4. Controlling the morphology of PANI-Pt nanocomposites using SLCs as templates is discussed in chapter 5. In chapter 6, synthesis of polyaniline-iron oxide nanocomposite is discussed. Chapter 7 is based on the preparation of a unique pristine graphene-PANI nanocomposite using SLCs. Chapter 8 presents the key findings of our research work and the future scope of the present work.