Development of New Fluorescent Chemosensors for Various Analytes and Their Evaluation as Molecular Logic Gates

A Thesis

Submitted for the Degree of

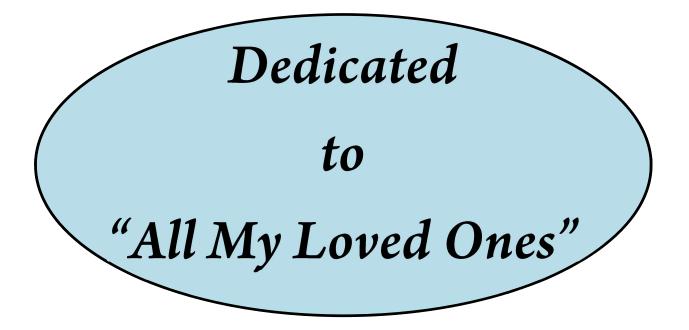
DOCTOR OF PHILOSOPHY

In the School of Basic Sciences

By

MANISHA DEVI

(D11021)



SCHOOL OF BASIC SCIENCES

INDIAN INSTITUTE OF TECHNOLOGY MANDI

Kamand-175005, India

18th October, 2016

www.iitmandi.ac.in

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this Thesis is the result of investigations carried out by me in the *School of Basic Sciences*, Indian Institute of Technology Mandi, under the supervision of *Dr. Pradeep C. Parameswaran*, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place: Kamand (Mandi)

Date: 18th October, 2016

Signature:

Name: Manisha Devi

<u>www.iitmandi.ac.in</u>

Declaration by the Research Advisor

I hereby certify that the entire work in this Thesis has been carried out by *Manisha Devi*, under my supervision in the *School of Basic Sciences*, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree of Diploma.

Signature:

Name of the Guide: Dr. Pradeep C. Parameswaran Date: 18th October, 2016

Acknowledgements

This thesis is the culmination of the journey through my Ph.D. work, which was just like climbing a high peak step by step. When this thesis becomes a reality, I realize that only my name will appear on the cover, although many individuals have contributed to accomplish this huge task. I would like to extend my sincere thanks to all of them.

First and foremost, it is my pleasure to express my deep sense of thanks and heartiest gratitude to my thesis supervisor, *Dr. Pradeep C. Parameswaran* for his continuous guidance, encouragement, suggestions and support over the years, which is unmeasurable. Without his guidance, this work would not have been possible. Under his guidance, I could learn a lot and successfully overcome many difficulties. His own zeal for perfection, passion, unflinching courage, punctuality and conviction have always inspired me to do more and become like him. His office door was always open for me for discussions. It is a great honor and most beautiful experience of my life to work under his supervision. I sincerely thank him from the bottom of my heart and will be truly indebted to him throughout my life time.

I would like to thank *Dr. Abhimanew Dhir* for being my unofficial co-advisor and for his guidance, encouragement and support during my Ph. D. work.

I would like to thank my Doctoral Committee members *Dr. Aniruddha Chakraborty*, *Dr. P. C. Ravikumar*, *Dr. Syed Abbas* and *Dr. Rajeev Kumar* for their valuable time, efforts and suggestions towards my thesis work.

No research work is possible without the required infrastructure. I would like to express my sincere thanks to *Prof. T. A. Gonsalves*, Director, IIT Mandi for providing research facilities through the Advanced Materials Research Center (AMRC), IIT Mandi.

I would like to thank AMRC coordinator *Dr. Venkata Krishnan* and *Dr. Rik Koner* for providing a conducive research environment. Also I thank all the AMRC staff for their help and co-operation throughout my research work.

I would like to thank all the faculty members of Chemistry at IIT Mandi, especially *Dr. Subrata Ghosh, Dr. Prem Felix Siril, Dr. P. C. Ravikumar, Dr. Venkata Krishnan, Dr. Aniruddha Chakraborty* and *Dr. Chayan Kanti Nandi* for their constant support throughout my Ph.D. work.

ACKNOWLEDGEMENTS

I would like to thank my lab mates and friends at IIT Mandi for their encouragement and moral support, which made my stay and studies more enjoyable. I would like to thank *Dr. Diwaker* and *Shikha Gupta* for being great friends and for their continuous help during my Ph.D. work. I would like to extend my thanks to *Abhishek Gupta* and *Ashwani* for their friendship and for their help in my research work. Big thanks to all my colleagues and friends, particularly, *Guruprasad*, *Suman*, *Rambabu*, *Shilpa* and *Gourav Dey* for providing me a friendly work environment. I would like to thank *Dr. Puja* for helping me in my initial project. Also, I would like to thank *Snigdha Jain* for working with me as a project student.

I would like to thank Ministry of Human Resource Development (MHRD), Govt. of India for providing me a fellowship for my Ph. D. work.

Finally, I acknowledge the people who mean a lot to me, my parents (*Mumma-Papa*), my sweet brother (*Happy*) and all family members for showing faith in me and for giving me the freedom to choose what I wanted. I am thankful to my family for their unconditional love, encouragement, patience, understanding and support. My parents and brother have always encouraged me throughout my studies and provided me everything I needed. They have always been there for me and I am thankful for everything they have done to help me achieve my goals. I would like to thank my grandmother (*Nani Ji*) for her love. My heart felt regard goes to my inlaws (*Mummi Ji -Daddy Ji*) for their love and moral support.

Last but not the least, I owe thanks to a very special person, my dear husband, *Varun Katoch* for his continuous and unfailing love, help and support, especially during the final stages of my Ph.D. He has always inspired me and helped me to keep things in perspective. I greatly value his contributions and deeply appreciate his belief in me. I consider myself the luckiest in the world to have a lovely and caring family, supporting me always with their unconditional love.

Above all, I want to offer this endeavor to **The Almighty God** for giving me the strength, patience and good health to work through all these years so that today I can stand proudly with my head held high.

Manisha Devi

TABLE OF CONTENT

Declaration		
Acknowledgement		
Table of Contents		
Abbreviations		vi-viii
Abstract		ix
CHAPTER 1 :	Introduction and Review of Literature	1-37
CHAPTER 2 :	A Tris(hydroxymethyl)aminomethane-rhodamine Spirolactam Derivative as Dual Channel pH and Water Sensor and its Application to Bio Imaging	38-64
CHAPTER 3 :	A Sandwich-type Zinc Complex from Rhodamine dye based Ligand: A potential Fluorescent Chemosensor for Acetate in Human Blood Plasma and A Molecular Logic Gate with INHIBIT Function	65-91
CHAPTER 4 :	Modulating Sensitivity and Detection Mechanism with Spacer Length: A New Series of Fluorescent Turn-ON Chemodosimeters for Pb ²⁺ based on Rhodamine-quinoline Conjugates	92-123
CHAPTER 5 :	Design of Tripodal Fluorescent Molecules for Gold ion Sensing, Insitu Formation of Gold Nanoparticles, Catalysis and Construction of molecular logic gate	124-155
CHAPTER 6 :	Development of Steroid-based $A(LS)_3$ type of Tripodal Compounds for selective Fluoride Sensing Application	156-179
CHAPTER 7 : Appendix List of Publication	Conclusions	180 182-211 212-213

Table of Contents

Abbreviations

Symbols

Φ	Quantum Yield
λ_{em}	Position of the Emission Maximum
λ_{ex}	Position of the Excitation Maximum
3	Molar Extinction Coefficient
τ	Life Time
δ	Chemical Shift
	Solvents
CH ₃ CN/ACN	Acetonitrile
CHCl ₃	Chloroform
CCl ₄	Carbon tetrachloride
CH ₂ Cl ₂ /DCM	Dichloromethane
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
DIPEA	N,N-diisopropylethylamine
EtOH	Ethanol
MeOH	Methanol
TEA	Triethylamine
THF	Tetrahydrofuran
	Chemicals
BTC	Benzene-1,3,5-tricarbonyl chloride
BODIPY	Boron dipyrromethane difluoride
CDI	1,1-carbonyldiimidazole
EDTA	Ethylenediaminetetraacetic acid
HEPES	4-(2-hydroxethyl)-1-piperaineethanesulfonic acid
HPB	2-(2'-hydroxyphenyl)benzoxazole
HoBt	1-hydroxybenzotriazole
NBD	Nitro-benzoxadiazole

ABBERIVATIONS		
TRIS	Tris(hydroxymethyl)-aminomethane	
Mechanisms		
AIE	Aggregation-Induced Emission	
CHEF	Chelation Enhanced Fluorescence Signaling	
СТ	Charge Transfer	
EET	Electronic Energy Transfer	
ESIPT	Excited State Intramolecular Proton Transfer	
FRET	Fluorescence Resonance Energy Transfer	
ICT	Intramolecular Charge Transfer	
MLCT	Metal Ligand Charge Transfer	
eT	Electron Transfer	
ET	Energy Transfer	
PICT	Planar Intra-molecular Charge Transfer	
PET	Photoinduced Electron Transfer	
TICT	Twisted Intra-molecular/Intermediate Charge Transfer	
Instruments		
¹³ C NMR	Carbon Nuclear Magnetic Resonance	
¹ H NMR	Proton Nuclear Magnetic Resonance	
HR-MS	High Resolution Mass Spectrometry	
ICP-MS	Inductively Coupled Plasma Mass Spectroscopy	
FT-IR	Fourier Transform Infrared Spectroscopy	
TEM	Transmission Electron Microscopy	
SEM	Scanning Electron Microscopy	
STEM	Scanning Transmission Electron Microscopy	
TGA	Thermogravimetric Analysis	
DLS	Dynamic Light Scattering	
DRS	Diffuse Reflectance Spectroscopy	
UV-Vis	Ultraviolet-Visible	
AAS	Atomic Absorption Spectroscopy	

	Others
Ι	Fluorescence Intensity in the Presence of Analyte
Io	Fluorescence Intensity in the Absence of Analyte
НОМО	Highest Occupied Molecular Orbital
HPLC	High Performance Liquid Chromatography
LOD	Low Detection Limit
LUMO	Lowest Unoccupied Molecular Orbital
NIR	Near-Infrared
TLC	Thin Layer Chromatography
TMS	Tetramethylsilane
PDI	Polydispersity Index
WBCs	White Blood Cells
LMGs	Low Molecular Mass Gelators
RMS	Root-mean-square
μΜ	Micromolar
mM	Milimolar
nM	Nanomolar
°C	Degree Celsius
m.p.	Melting Point
CCDC	Cambridge Crystallographic Data Centre
DFT	Density Functional Theory
CPU	Central Processing Unit

Abstract

In recent years, the detection and quantification of biologically and environmentally important ions and small molecules have emerged as significant goals in the field of supramolecular chemistry. Among the various chemosensors used for these purposes, fluorescent chemosensors have attracted particular attention because of their high sensitivity and potential for *in vitro* and *in vivo* analyses. A fluorescent chemosensor is a molecular system in which the physicochemical properties of a fluorophore moiety vary upon interaction with a chemical species so that a change in fluorescence is produced. Fluorescent chemosensors have several advantages over other optical sensors because of their versatility, high selectivity/sensitivity, reliability & reproducibility, low detection limit (LOD), low cost, non-invasive nature and potential for real-time analyses. Fluorescent chemosensors are often explored towards other applications as well, such as the construction of molecular logic gates. This is because, the chemosensors exhibit large differences in their photophysical properties in "OFF" and "ON" states, which can therefore be treated as "0" and "1" states, enabling their applications in molecular logic operations.

In the present thesis, a series of fluorescent chemosensors based on different fluorescent platforms have been developed towards the detection of various small molecules, cations and anions. The photophysical and binding properties of these new fluorescent chemosensors have been explored in detail and possible mechanisms of their binding interactions with analytes have been established through spectroscopic studies. Some of the fluorescent chemosensor have been explored towards their bio-imaging and molecular logic gates applications as well.