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Abstract

Landslides are widespread disasters in hilly regions. These disasters cause lots of injuries
and deaths every year. Due to these injuries and deaths, it is imperative to monitor landslides
and to warn people about impending disasters timely. It is also essential to predict slope
movements ahead of time so that people get enough lead time to evacuate from the sliding
region. The existing technologies monitor landslides at a very high cost, and these
technologies do not warn people and predict slope movements ahead of time. Thus, one
objective of this thesis is to detail the development, deployment, and calibration of a new
low-cost IoT-based landslide monitoring, warning, and prediction system. The system is
deployed on the soil surface, and it can generate real-time warnings via SMSes, blinker, and
hooter in case significant surface movements occur. The main advantage of the new system
is that it is low-cost, and it may be deployable at many locations to monitor the landslides
and to warn people timely.

The second objective of this thesis is to perform predictive analytics on the time-series
data of slope movements. For this purpose, time-series data were collected over 78 weeks
from July 2012 to July 2014 using inclinometers that were placed in five boreholes at the
Tangni landslide in Chamoli, India. These sensors measured tilt in degree units (essentially
the angle the inclinometer tilted over time). Different algorithm parameters were calibrated
to the training data (first 62-weeks) and then made to predict the test data (the last 16-weeks)
across the five time-series (i.e., one series from each sensor in a borehole).

In the first experiment, moving-average algorithms (SARIMA and AR) and support
vector regression algorithms (SMOreg) were developed. Each algorithm was calibrated
to each time-series independently. In training, the AR and SMOreg algorithms performed
the best and second-best with RMSEs of 0.40° and 0.37°, respectively, compared to the
SARIMA algorithm (RMSE: 0.71°). However, when these algorithms were applied on the
test dataset, results revealed that SARIMA performed best (RMSE: 0.33°) compared to the
SMOreg and AR algorithms (SMOreg, RMSE: 0.54°; AR, RMSE: 0.59°). In this experiment,
it was found that the moving-average SARIMA algorithm outperformed the support-vector
regression algorithm for slope movement predictions. Also, the test accuracy was higher
than the training accuracy. Although we may only speculate, one explanation could be that
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the parameters and mechanisms in these algorithms may have enabled them to generalize to
the unseen test dataset.

In the second experiment, neural-network algorithms (MLPs and LSTMs) were developed
and compared with moving-average algorithms (SARIMA), where the latter moving-average
algorithm had performed best in the first experiment. One-step-ahead walk-forward validation
was used for algorithm comparisons. In the training of algorithms, LSTM and SARIMA
algorithms performed the best and second-best with RMSEs of 0.37° and 0.71°, respectively,
compared to the MLP algorithm (RMSE: 0.99°). When these algorithms were evaluated on
the test dataset, it was found that the SARIMA algorithm (RMSE: 0.33°) performed better
compared to the LSTM (RMSE: 0.37°) and MLP (RMSE: 0.38°) algorithms.

In the third experiment, ensemble and non-ensemble machine-learning (ML) algorithms
were compared to predict slope movements. Non-ensemble algorithms (Sequential Minimal
Optimization Regression (SMOreg), and Autoregression) and ensemble algorithms (Random
Forest, Bagging, Stacking, and Voting) involving the non-ensemble algorithms were used.
Results revealed that the ensemble algorithms (Bagging, Stacking, and Random Forest)
performed better compared to non-ensemble algorithms. These results also showed that the
ensemble algorithms seem to follow the general pattern where the training error was lesser
compared to the test error.

In the fourth experiment, moving-average algorithms (Seasonal Autoregressive
Integrated Moving Average (SARIMA) algorithm and Autoregressive (AR) algorithm), Lazy
algorithms (Instance-based-k (IBk) and Locally Weighted Learning (LWL)) and
information-gain algorithms (REPTree and M5P) were compared in their ability to predict
slope movements. Results revealed that the moving-average algorithms (SARIMA and AR)
performed better compared to the lazy and information-gain algorithms during both training
and test. Specifically, the SARIMA algorithm possessed the smallest error compared to other
algorithms in test data.

From all the experiments, one could conclude that the moving-average algorithms
perform better compared to other algorithms. A likely reason for these findings is the
presence of seasonal, auto-regressive, and moving-average components in the
moving-average algorithms. The implications of our results on slope movement predictions
in the real-world are highlighted.
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