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ABSTRACT

The work presented in this thesis evaluates the influence of phonon interaction on
the solid-state quantum dots embedded inside microcavities. In the first chapter, we
have introduced the basics of Cavity quantum electrodynamics (CQED). Quantum
dots and microcavities are discussed in this chapter. Then polaron master equation is
derived to study the influence of phonon interaction. Basics of quantum entanglement
and its measures are also discussed in this chapter.

In the second chapter, the effect of exciton-phonon coupling on two-photon lasing
in a single quantum dot embedded inside a photonic crystal cavity is discussed. Both
incoherent and coherent pumping for achieving two-photon lasing is analyzed. The
Wigner function is plotted to observe the squeezing in the cavity field. In the case of
two-photon lasing, we do not find squeezing in the cavity field. However, we discuss
the method of four-wave mixing for generating a continuous source of squeezed state
using single QD.

In the third chapter, we have proposed the large phonon-assisted two-mode two-
photon interaction in the system of two off-resonantly coupled QDs inside a bimodal
photonic crystal cavity. We have observed that the cavity induced two-mode two-
photon resonances, which appear for g; # gs, is eliminated in the presence of exciton-
phonon interactions and the phonon-assisted two-mode two-photon resonances occur
at Ay = A,. It is observed that these interactions are more pronounced for positive
detunings. In the fourth chapter, we have calculated the time-dependent concurrence
for the two-photon NOON state and polarization-entangled state using a single biex-
citonic quantum dot. In the last chapter, we have proposed an efficient two-photon

source which uses an ultrashort Gaussian pulse for its operation.



