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Abstract

When a liquid is cooled slowly, it attains minimum energy by searching through all the
possible configurations, consequently forming a crystal at the freezing point. When there is
an increase in the cooling rate, the system visits a lesser number of probable configurations,
which increases the disorder in the solid. The tendency to find equilibrium further reduces
with an increase in the complexity of the constituent particles, that is, the shape or relative
change in their concentrations in multicomponent systems. There is an increased tendency to
settle in multiple local minima, which eventually leads to glass transition on further cooling.
The state of glass is highly disordered, structurally similar to liquids, but mechanically similar
to solids. Single component Lennard-Jones (LJ) liquid at lower temperatures crystallizes
whereas, LJ binary mixture used in the study of Kob and Andersen (Phys. Rev. Lett. 73,
1376 (1994)) (KALJ) with 20% minority component (B particle) undergo glass transition
on cooling. At compositions of the minority component (< 10%), the binary mixture
crystallizes in the studies by Valdes et. al.(J. Chem. Phys. 130, 154505 (2009)). In this work,
molecular dynamics simulations of the pure Lennard-Jones system and the Kob-Andersen
model with the variations in the composition of the minority component B in the range
0% — 15% are performed to see the effects of increment in B (impurity) on the structures
and relaxation dynamics. The glass transition is characterized by the dynamics, while studies
on crystallization focus on the structure. Therefore, both structural and dynamical studies are
done to understand crystallization, vitrification, and the competition between them.

To study glass transition, we have generated low-temperature state points by a fast quench-
ing and looked at the structural variations for each composition at different temperatures.
Pressure variations at B particle’s concentration as 0%, 1%,5%,7.5%,10%,12.5%, and 15%
show a linear decrease in pressure on cooling due to an increase in particles’ mutual affinity
on the successive increment of B particles. We define a characteristic temperature called
Tr s for each composition studied, which is the lowest temperature where a system can stay
supercooled in a typical long-time trajectory which is much longer than the a-relaxation
time. It is considered as the temperature of the last supercooled state. We find that Ty
reduces linearly with an increase in B concentration. Below this temperature, a system shows
a sudden transition in the order identifiable from the global bond-order parameter Qg, which
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differs at different B concentrations. The typical Qg value diminishes with an increase in the
B concentration. The reduction of the order is also clearly visible from the radial distribution
functions g(r), whose first peak gets taller; besides, the second peak gets broadened due to
the formation of the multiple secondary structures on supercooling. We have analyzed the
partial radial distribution function g4 (r), which shows that at all compositions, A component
undergoes crystalline ordering below Tyg. As temperature reduces, the first peak of the g(r)
increases in height, showing enhancement in the caging that is quantified using p;,., which is
the local density at the first peak of g(r). When the local density increases as temperature re-
duce, it shows enhancement of the barrier height and reduction in free-volume available to the
particles for relaxation. The crystalline state just below Ty g serves as a free energy minimum
of the configuration for a system. Comparison of the g(r) in this state shows that there is a
difference in the positions and heights of various peaks, which vary non-monotonically with
composition. The analysis of partial g(r) shows that the A — B interaction locally destabilizes
the lattice by inducing local defects; hence, the lattice formation gets destabilized. Eventually,
with more concentration of B, the crystallization suppressed to support the glass transition at
deeper supercooling with stabilization of local structures.

The hallmark of a glass-forming system is the cage formation and the associated dynamic
heterogeneities. The mean square displacements at 7;g show a prolonged sub-diffusive
regime, which gets more prolonged as impurity increases; thus, give a qualitative comparison
of the formation of dynamical cages that enhances collective relaxation. The comparison
of the non-Gaussian parameter o, () near Trg shows that its peak height increases as B
concentration increases, signifying deepening of the dynamic heterogeneity. This increase
of height and peak position of () of B induces growth of a,(¢) of A, thus, showing
competition between both the species in establishing order and disorder at lower temperatures.
The overall or average a(¢) is largely influenced by the a(¢) of B particle. As temperature
reduces at all compositions, the cage size reduces. Near a critical cage size, there is a trigger
of crystallization, around r¢4e ~ 0.23, at all compositions. F;(q,t) at all the supercooled
states show KWW-exponent 8 ~ 0.9 signifying a nearly exponential relaxation. At 15%
B, the variation of the F;(q,t) shows a considerable slowdown of the relaxation process.
By computing  of A and B, we find that as B composition increases, the heterogeneity
in the relaxation of B component decreases, and that of A increases leading to the mixing
of collective relaxation process in the supercooled state. This study shows that no sharp
boundary exists from crystallization towards vitrification when the B concentration increases.
The transition from a system that prefers crystallization to the one that prefers glass transition
is gradual. Hence, we predict Ty s for a couple of nearby higher B concentrations by linear
extrapolation of B% versus T;s. We have computed the mode-coupling theory glass transition
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temperature 7, from the schematic mode-mode coupling theory and the dynamics divergence
temperature Ty of Vogel-Fulcher-Tammann relation from the fit of the 7, versus temperature.
T is always between Ty s and 7. The slope of variation of Ty ¢ with composition is the
highest, therefore, it will cross variation in 7, and Ty at higher concentrations of ~ 17%
and ~ 23% respectively. As the growth of the order parameter Qg weakens with B, for
higher concentrations of B, 77§ may not be meaningful. We extrapolated the value of T; at
well-known composition 20% of B to be 0.47, which closer to the reported value 0.435 with
an 8% deviation.

The length and time scale of the dynamic heterogeneity is related to the variation of
the 4-point correlator y4(q,t). The peak height of 1 (g,¢) quantifies the correlated motion

d
between the particles. We have proposed a power-law fit x4(q,t) =a ( %) which works
reasonably well. We have proposed and tested a power-law relation of the form connecting
the peak height to excess density x2 (k,t) = A (po — ploc)k that relates the correlated motion
with the stability of the cages.
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