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Abstract

Liquid under fast cooling or fast compression undergoes a glass transition; while, a glass
is an unconventional phase unlike liquid, gas, and solid. These phases are formed during
the change of the thermodynamic parameters such as temperature or pressure at infinitely
slow rate where the system relaxes to its lowest Gibbs free-energy minima and remains there.
When thermodynamic parameters change, all systems move away from equilibrium, which
at a long time relaxes to new minima. This simple view of the phase changes considerably
get altered when the relaxation process slows down. Glasses are formed when a system is
cooled or compressed at a higher rate than the relaxation can occur. The specification of
how fast the compression or cooling is required to form glasses depends on the relaxation
time of the liquids, which vary with intermolecular potentials. Glass transition occurs in the
dense systems and glass has the same structure as that of a liquid with arrested dynamics.
Many systems with different complex potentials show similarities in the relaxation process
irrespective of complexity in the potential. One of the ways to develop theories of glass
transition is by extending the theories of the liquid state. Investigations of Weeks-Chandler-
Andersen (WCA) (J. Chem Phys. 54,5237(1971)) showed that dense Lennard-Jones systems
can be well described by the repulsive part of the potential. A test of this by Berthier and
Tarjus (Phys. Rev. Lett. 103, 170601(2009)) on the Kob-Andersen (Phys. Rev. Lett. 73,
1376(1994)) glass-forming binary mixture (A (80%) and B(20%) components) and its WCA
variant (without the attractive part of the interaction ) show that dynamics considerably vary
at lower temperatures. There are many following investigations which looks into various
aspect of the role of attractive interactions in glass transition. Inspired from results of these
earlier studies, we attempt to explain the origin of the difference in dynamics as the interplay
of the barriers of three interactions, namely, A-A, A-B, and B-B. We have looked into
various aspects of glass transition and its density dependence with an emphasis on the role of
attractive interaction.

Chapter 1: Presents a short introduction to the present understanding of the glass
transition and difficulties in various theoretical formalisms, especially the relation between
structure and dynamics etc. which is missing from the earlier studies. This is followed by a
discussion on correlations on basic liquid state theory and their relevance in understanding
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the relaxation and connection to glassy domain formation without attractive interactions.
Basic theories of glass transition that are relevant to understand the problems addressed in
this thesis is discussed: the schematic mode-coupling theory (MCT), the phenomenological
Vogul-Fulcher-Tammann relation, Adam-Gibbs theory, random first-order transition theory,
and free-volume theory. Next, the motivation for the studies presented in the thesis which
details earlier studies that look into the role of attractive interactions in the system.

Chapter 2:Computer simulations bridges the gap between the theoretical models and
experimental observations. A comprehensive theoretical understanding of glass transition is
still elusive, while, different experiments support different theoretical models; thus, a detailed
microscopic understanding is desirable to build theories that can explain the glass transition.
Despite the complexity of the system that undergoes glass transition, many features of the
glass transitions have an underlying universal features such as steps like slow relaxation.
Simple computational models, such as Kob-Andersen models have given light on many
aspects of the glass transition. To look at density-dependent features of glass transition and
also the effect of attractive interaction on the properties of glass transition, we have simulated
Kob-Andersen model binary mixture and its WCA variant from low to higher density i.e.
ρ =0.8 to 1.8, to understand, how various glass transition properties vary with density. The
simulations are from high to low temperature in density grids in microcanonical ensemble to
obtain dynamics driven by the unperturbed Hamiltonian. The lowest temperature in the grid
in each set of density is set close to the mode-coupling theory glass transition temperature.

Chapter 3: One of the simple methodology to understand the difference in the dynamics
of KA and KAWCA model is in terms of the inter-molecular interactions, this is because in the
Kob-Andersen binary mixture, the minority component is introduced to induce frustrations
that prevent crystallization, which is smaller in the size in its interaction to the major
component. We have looked at this qualitative view and attempted a quantitative relation
between structure and dynamics. In these studies lower densities ρ =0.8 and 1 are where
attractive interactions lead to a phase-separated system at a lower temperature when attractive
interactions are present. The relative difference in the pressure between KA and KAWCA
models to total pressure reduces as density increases.

The studies of the partial radial distribution function gAA(r) shows enhancement of the
peak height at densities, where system phase separates at lower temperatures. Similar features
were observed in A-B partial radial distribution function gAB(r), which is the strongest among
the three interactions. The gBB(r) of both models differs considerably at all densities at lower
temperatures, they are comparable at the highest density in this study at ρ =1.8. Comparison
of average radial distribution function g(r) with the partial one show that the highest peak
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arises at the same position of the highest peak of gAA(r) which shows that here the density
remains high, thus, can be considered as the origin of the free-energy barrier.

Comparison of the variation of α relaxation time for KA and KAWCA models at these
densities with reduction of temperature shows that there is a direct correlation between the
growth of the peak height of the g(r) and the relaxation time. The mean force distribution in
the radial direction on a reference particle show that in all densities at high temperature the
force distribution is identical for KA and KAWCA models, at these state points the relaxation
dynamics of these systems are also identical. We have proposed a relation connecting the
density relaxation and density at the peak position of the first coordination shell in similar
arguments of the free-volume theory. This exponential function τα ∝ exp(ρ0/ρ0 −ρloc)

which predict a critical local peak height density ρ0, where the relaxation dynamics diverges.
We have shown that this critical density increase from lower density to higher. This critical
density also shows similar variation and crossover to KAWCA models at a high density
which is observed for Tc and To thus similar to the predictions of existing models.

Chapter 4: For a system that undergoes glass transition, the phenomenological models
divide the system into regions where the dynamics of the systems differ. There are many
investigations in the Kob-Andersen binary mixture that looks into various aspects of the
dynamical heterogeneities in the system, earlier investigations of glass transition extensively
used mean square displacements as a primary tools to characterize the cages formed near
the glass transition. In this chapter, we first look at the detailed characterization of the
microscopic dynamics of the KA and KAWCA models to look for density dependence of
dynamics. Here we use mean square displacement as the primary measure to characterizes
cage formation near the glass transition.

The partial diffusion coefficients of A and B differ in their values as the density increases
at high temperatures and they become nearly equal at low temperatures due to enhancement
of collective rearrangement and its effect on diffusion. At density 1.2, the comparison of
growth in the non-Gaussian parameter of A and B with the reduction of the temperature
shows that the non-Gaussian parameter of B grows at a higher rate than A which is different
from density 1 and 0.8, is because of structural inhomogeneities in the distribution of A at
the interface of the phase-separated domains. In higher densities the growth of non-Gaussian
parameter of B always higher than that of A.

We compare the variation of the β relaxation time from the comparison of the peak
time of the non-Gaussian parameter. At the highest density of this study, at 1.8 the mean
square displacements of KA and KAWCA nearly fall on each other. The cage radius rcage

is small even at high temperatures, which further reduces as temperature drops. At this
density, average diffusion coefficient D is nearly the same for KAWCA and KA models
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which shows the negligible contribution from the attractive interactions. It is interesting
to look at the variation of the stretched exponential relaxation exponent β of Fs(k, t) and
identify the heterogeneity in the relaxation from the variation in the limit 0 < β < 1. In
this study our investigations are limited till the lowest temperature near Tc , therefore the
low value of the β below 0.5 is not observed. Next, the thesis looks at the growth of the
correlated volume from analysis of the four-point correlation functions. There is a growth of
the peak of the four-point correlation function for A and B, when compared in the densities
where system phase separates for the KA model shows that they are identical but magnitude
differs for the KA model, while that for KAWCA model the signatures of growth is absent.
At high densities, there is the growth of the four-point correlation function as the pressure in
the KAWCA model grows larger as the repulsive forces are propagated at a larger distance in
this system, similar to jammed granular systems. Finally, we have looked at Stokes-Einstein
relations at all densities in this study which show complex correlation between observed
heterogeneity in the system.
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