PROCESSING LOW THERMAL EXPANSION GLASS-CERAMIC FROM LITHIUM ALUMINOSILICATE (LAS) GLASS

A THESIS

Submitted by

VENKATESWARAN C.

for the award of the degree

of

DOCTOR OF PHILOSOPHY

SCHOOL OF ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY MANDI HIMACHAL PRADESH-175075, INDIA

MARCH 2021

Dedicated to ISRO, my Family & Friends

Preface

The present Ph.D. thesis is submitted in candidacy for a Ph.D. degree from Indian Institute of Technology (IIT), Mandi. The work presented herein was carried between August 2014 and August 2020 at Glass and Electronic Materials Division (GEM), Materials and Metallurgy Group (MMG), Materials and Mechanical Entity (MME), Vikram Sarabhai Space Centre (VSSC) under the supervision of Dr. Sharad Chandra Sharma, VSSC, Dr. Rahul Vaish and Dr. Vishal Singh Chauhan of School of Engineering.

The project was fully funded by the Department of Space (DoS), Indian Space Research Organisation (ISRO), Vikram Sarabhai Space Centre (VSSC). The main goal of the project was to explore the development of low thermal expansion glass-ceramics (LEGCs) from lithium aluminosilicate glass with improved properties.

Declaration

I hereby declare that the entire work embodied in this thesis is the result of investigations carried out by me in the *Glass and Electronic Materials Division*, Vikram Sarabhai Space Centre (VSSC) and *School of Engineering*, Indian Institute of Technology (IIT), Mandi, under the supervision of Dr. Sharad Chandra Sharma, VSSC, Dr. Vishal Singh Chauhan and Dr. Rahul Vaish, IIT-Mandi, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on the finding of other investigators.

Place: Thiruvananthapuram

Signature:

Amael

Date: 19th

19th March 2021

Name:

Venkateswaran C (ERPD1401)

Certificate

This is to certify that the thesis entitled "**Processing Low Thermal Expansion Glass-Ceramic** from Lithium Aluminosilicate (LAS) glass" submitted by VENKATESWARAN C, an External Research Scholar (ERPD1401) in the School of Engineering, Indian Institute of Technology, Mandi, for the award of the degree of **DOCTOR OF PHILOSOPHY**, is a record of an original research work carried out by him under my supervision and guidance. The thesis has fulfilled all the requirements of the Vikram Sarabhai Space Centre (VSSC). The results embodied in this thesis have not been submitted to any other University or Institute for the award of any degree or diploma.

शारद च-द्र रामी

Sharad Chandra Sharma Associate Director, R&D Vikram Sarabhai Space Centre, Indian Space Research Organisation, Thiruvananthapuram, Kerala, PIN-695022

Place: Thiruvananthapuram

Date: 19th March 2021

THESIS CERTIFICATE

This is to certify that the thesis entitled "PROCESSING LOW THERMAL EXPANSION GLASS-CERAMIC FROM LITHIUM-ALUMINOSILICATE (LAS) GLASS" submitted by VENKATESWARAN C to the Indian Institute of Technology, Mandi for the award of the degree of **Doctor of Philosophy** is a bonafide record of research work carried out by him under my supervision. The thesis has fulfilled all the requirements as per the regulations of the Institute. The contents of this thesis, in full or in parts, have not been submitted to any other Institute or University for the award of any degree or diploma.

Rahul Vaish Associate Professor School of Engineering Indian Institute of Technology Mandi Himachal Pradesh, PIN—175075 Vishal Singh Chauhan Associate Professor School of Engineering Indian Institute of Technology Mandi Himachal Pradesh, PIN—175075

Place: Kamand, Mandi

Date: 19th March 2021

PUBLICATIONS AND PRESENTATIONS

PUBLICATIONS

- Venkateswaran, C. *et al.*, "Near-zero thermal expansion transparent lithium aluminosilicate glass-ceramic by microwave hybrid heat treatment." *Journal of the American Ceramic Society* 101, no. 1 (2018): 140-150.
- Venkateswaran, C. *et al.*, "Crystallisation studies on site-saturated lithium aluminosilicate (LAS) glass." *Thermochimica Acta* 679 (2019): 178311.
- Venkateswaran, C. *et al.*, "Processing Li₂O-Al₂O₃-SiO₂ (LAS) glass-ceramic with and without P₂O₅ through bulk and sintering route", *Journal of Non-Crystalline Solids*, (2020): 120289.
- Venkateswaran, C. *et al.*, "Crystallisation and sintering studies on an anomalous las glass towards making tunable expansion ceramic", *International Journal of Applied Glass Science*, (2021) IJAG15917.
- 5. Venkateswaran, C. *et al.*, "Lithium aluminosilicate (LAS) ceramic: A review of recent Progress", International Materials Review, IMR696 (Under review).

PRESENTATIONS IN CONFERENCE, SYMPOSIUMS & TECHNICAL MEETING

- Near-Zero thermal expansion materials from microwave hybrid heating, International Conference on Advances in Glass Science and Technology (ICAGST)-2017, CSIR-Central Glass and Ceramic Research Institute, Kolkata, 23rd-25th January 2017 (*Received Best Poster Award*).
- Nanoindentation studies on lithium aluminosilicate glass and glass-ceramic, Indian Institute of Metals (IIM) - Research Scholar Symposium on materials Science and Engineering, 6th April 2018.
- Crystallisation behaviour of lithium aluminosilicate glass, Indian Institute of Metals (IIM) -Research Scholar Symposium on materials Science and Engineering, 3rd April 2019.
- Effect of Phosphorus Pentoxide (P₂O₅) in processing lithium aluminosilicate glass-ceramic through bulk and sintering route, International Conference on Advanced Thermostructural Materials & Thermal Protection System-2020, Thiruvananthapuram, 19th -21th January 2020 (*Received Best Paper Award*).
- C. Venkateswaran, Processing of low expansion glass-ceramic, Annual Technical Meeting-2020, Materials Research Society of India, Thiruvananthapuram, 7th March 2020. (*Receievd Best Presentation Award*).

ACKNOWLEDGEMENTS

Foremost, I am very grateful to GOD ALMIGHTY for grace and blessing.

I would like to sincerely thank Chairman, ISRO, Director, VSSC and Academic Committee for providing me with all the opportunities.

My sincere gratitude to my PhD guides Dr. Rahul Vaish and Dr. Vishal S. Chauhan of IIT-Mandi, and Dr. S. C. Sharma, AD (R&D), VSSC who have paved my research career. Special thanks to Dr. Rahul Vaish, who inspired me a lot through his diligent involvement in research without his follow-up this thesis would not have been possible.

My sincere thanks to my Doctoral Committee for intellectual questions and guidance.

My travel towards this thesis would not be possible without support from number of people. I am grateful to all of them. Some, however, deserve special mention:

Faculties at IIT-Mandi: Dr. Sudhir Pandey, Dr. Vishwanath B., Dr. Venkata Krishnan and my Co-guide Dr. V. S. Chauhan who educated me various aspects of Materials Science and Engineering during the course work.

Dr. P.V. Venkitakrishnan, Director, CBPO/ISRO & Dr. Sam Dayala Dev D., Director, IISU – for encouraging this work from its inception.

My Senior colleagues: Dr. Roy M. Cherian, AD, VSSC, Dr. M. Mohan, Deputy Director, VSSC (MME), Dr. Bhanu Pant, Group Director, MMG/VSSC, and Dr. H. Sreemoolanadhan – for their honest cooperation, faith, encouragement and support.

Dr. S. A. Ilangovan DD, (PCM) MME and unknown reviewers of my manuscripts – for their constructive review comments.

International Commission on Glass (ICG) and Team, CGCRI – for the tutorial programme on glass science & technology.

Smt. Mariamma Mathew – for faith and freedom.

Enni Krishna and K.R. Narayanan Kutty – for performing laser generation studies.

All the 'Ignited Minds of INSTEF', Dr. Davinder and Dr. Rohit Patak – for their friendship.

All my Colleagues, Contract staffs, Trainee and Project students in GEM and AMCD – for helping me during experiments.

Dr. Sivaprakash, Dr. Chakravarthy, Dr. Sudhakar, Dr. Suresh, Arjunraj, Sadhik & Somu–for their positive influence.

Ezhilan, Karthick and Sandy – for just being around.

Doctor Manish Agarwal – for preserving my knee.

I also acknowledge all my Teachers with a deep sense of reverence.

I am indebted to my Lovely Family for the absolute love, help and support that they have extended. And finally, I acknowledge my wife, Divya, who sacrificed a lot during this Journey.

ABBREVIATIONS AND NOTATIONS

ABBREVIATIONS

- CTE Coefficient of thermal expansion
- DSC Differential scanning calorimeter
- DTA Differential thermal analyser
- GC Glass-ceramic
- HQSS High or β -quartz solid solution
- JMA John-Mehl-Avrami
- KSS Keatite solid solution
- LEGC Low thermal expansion glass-ceramic
- LAS Lithium aluminosilicate
- LTCC Low temperature co-fired ceramic
- NTE Negative thermal expansion
- PTE Positive thermal expansion
- SEM Scanning electron microscope
- SOFC Solid oxide field cell
- s.s. solid solution
- TA Thermo-analytical
- TE Thermal expansion
- TMA -Thermo-mechanical analyser
- TEM Transmission electron microscope
- ULEGC-Ultra-low thermal expansion glass-ceramic
- XRD X-ray diffraction
- ZTE Zero thermal expansion

NOTATIONS

- $T_0 = -300 \text{ K}$
- ΔG_D –Activation energy for transfer/diffusion of a species through the melt-nucleus interface
- Δh^* –Activation enthalpy of volume or enthalpy relaxation
- $\eta_{\rm s}$ –Activation enthalpy of shear viscosity
- E_{ac} –Activation energy of electrical conductivity
- E_n —Activation energy for nucleation
- $E_{\rm c}$ –Activation energy for crystal growth
- $E_{\rm g}$ —Activation energy of glass transition
- ω –Angular frequency
- $K_{\rm B}$ –Boltzmann constant (1.38064852 × 10⁻²³ m² kg s⁻² K⁻¹)
- θ –Bragg angle
- r^* —Critical radius of the nucleus
- *x* –Crystallized fraction at time *t*
- $T_{\rm c}$ —Crystallisation onset temperature
- \propto -Coefficient of thermal expansion
- ρ –Density
- *a_o* –Diffusion jump distance or mean crystal size
- σ_c –Electrical conductivity
- $E_{\rm f}$ —Electric field intensity inside the material
- *E* –Effective overall activation energy or activation energy of crystallisation

- *K* –Effective overall reaction rate or dimensionless shape factor
- W^* –Free energy change due to the creation of the interface
- ΔG —Free enthalpy of motion
- ν –Frequency factor
- g' –Geometric or shape factor
- *F* –Glass fragility index
- $T_{\rm g}$ —Glass transition temperature
- *P* —Heat dissipated per unit volume of a dielectric
- α –Heating rate
- *m* –Integer or half-integer denoting the dimensionality of the growth
- *D* –Mean size of the particle crystal
- $T_{\rm m}$ —Melting temperature /start of meting range
- I_v –Nucleation frequency per unit volume
- I_{v0} –Nucleation rate at steady-state (I_o)
- T_n —Nucleation temperature
- σ –Optical attenuation/turbidity coefficient
- *T*_P –Peak crystallisation temperature
- *n* —Refractive index or Avrami exponent/parameter
- $\varepsilon_{\rm r}$ —Relative permittivity
- *T*_S –Softening point
- $C_{\rm p}$ —Specific heat capacity
- *f* –Surface site fraction
- *T* –Temperature
- *u* –The crystal growth rate
- ε'' –The imaginary part of the permittivity
- $\tan \delta$ –The loss tangent of the material
- ε' —The real part of permittivity
- *TS* –Thermal stability of the glass
- t –Time
- *R* –Universal gas constant
- ε_0 –Vacuum permittivity
- η –Viscosity of glass
- λ –Wavelength of light
- β –XRD machine constant

ABSTRACT

The material with dimensional and thermal stability manifested their importance in widespread applications in kitchen to cosmos. The material of choice for applications which demand very high dimensional stability is lithium aluminosilicate (LAS) based low thermal expansion glassceramic. This doctoral thesis work explored the possibility of realizing an ultra-low expansion, transparent glass-ceramic (GC) for its potential use in space applications.

Chapter 1 introduces the field of research, background motivation and objective of the thesis.

Literature Review presented in Chapter 2 is targeted to discuss the structural features of different LAS crystal system including their polymorphs and solid-solutions, the origin of unusual properties, the role of chemical constituents and additives, significant results of thermo-analytical studies, current commercial applications, recent trends, emerging technologies and future research perspectives. This review offers adequate fundamental, and recent progress in the LAS system with significant emphasise on processing low thermal expansion glass-ceramic (LEGC), ceramic matrix composite, low temperature co-fired ceramics and associated technologies.

Chapter 3 brings out the process optimisation procedure adopted for realising transparent and nanocrystalline ultra-low thermal expansion glass-ceramic using microwave-assisted (hybrid)crystallisation of LAS glass realised from conventional melt quenching route. The experimental strategy involved two stages (i) identification of the optimum crystallisation temperature (T_c) under a microwave field and (ii) optimisation of microwave-assisted crystallisation process to achieve near-zero coefficient of thermal expansion (CTE). Optimum heat treatment schedules for nucleation and crystallisation under a microwave environment were found to be 720 °C/ 24 h and 775 °C/0.3 h respectively. The optimised heat treatment condition revealed the efficacy of the microwave hybrid heating, by producing nanocrystalline

(35-50 nm) and transparent (>82%) ultra-low thermal expansion glass-ceramic (ULEGC) having a linear coefficient of thermal expansion of -0.03×10^{-6} °C⁻¹ (0-50 °C).

In Chapter 4, crystallisation parameters of the LAS glass composition were studied using nonisothermal DSC and thermoanalytical (TA) methods. Available sites for nucleation has to reach a saturated condition, that is a primary validity criterion for employing conventional TA methods. The activation energy of crystallisation for a thermally stable LAS composition was determined after the prenucleation process, and it was found to be 371 ± 14 kJ/mol. A heat treatment programme for controlled crystallisation process was designed to result in a transparent (>80%), nanocrystalline, low expansion (CTE: -0.31×10^{-6} °C⁻¹ between -60 to +60°C) GC. Crystal growth at 775 °C was determined to be in the range $2.56-3.53 \times 10^{-11}$ m/s and viscosity of glass near the growth front was predicted to vary between 1.28×10^5 and 2.82×10^5 N. s. m⁻².

In Chapter 5, the LAS glass compositions with P_2O_5 content varying between 0 - 6.8 mol% were prepared through the conventional melt-quenching route. From high-temperature dilation results, it was found that different amount of P_2O_5 in the LAS glass greatly influences phase transformation characteristics, the softening and melting points. Two LAS glass systems, namely 3.1 mol% of P_2O_5 (P3.1) and without P_2O_5 (P0) were considered further towards making low expansion GC using bulk and sintering route due to their contrary thermal behaviour. The optimum nucleation temperature for P0 and P3.1 glass system was determined to be 640 and 700 °C, respectively using the Marotta method. Effect of heat-treatment temperature on the thermal expansion behaviours of the LAS GC was explained in detail. Negative thermal expansion (NTE) and low expansion GCs were produced from bulk and sintering route. Transparent β -quartz s.s. based ultra-low thermal expansion (0.04 ×10⁻⁶ °C⁻¹ between -60 and 400 °C) GC was produced.

Chapter 6 presents the crystallisation behaviour of unconventional LAS (1: 1.2: 7) composition having MgO, BaO, K₂O, and ZrO₂. Crystallisation parameters were determined using thermoanalytical models based on Differential Scanning Calorimetry (DSC). The activation energy of crystallisation, E, and frequency factor, v were calculated to be 354.40 kJ mol⁻¹ K⁻¹ and 1.63×10^{15} respectively. Effect of sintering temperature on density, phase constitution, thermal expansion, and microstructure are reported herein. The temperature range between 1373 K and 1473 K was found to be the optimum window for sintering the glass particles. GC with CTE matching the Fe-Ne superalloy is reported herein. Considering the LAS glass system's better sinterability, efforts were made towards sintering alumina with LAS glass as a sintering aid. The 5 wt.%. LAS/Al₂O₃ composite was prepared with density: 3.6 g/cm³, relative permittivity 10.5, and dielectric loss tangent 2.45×10^{-3} . This composition was found to be a potential CTE compensator material while processing tailorable CTE ceramic or polymer-based composites. Limitation of the present work, summary and future scope of work are presented in Chapter 7. Keywords: lithium aluminosilicate, glass-ceramic, low thermal expansion, negative thermal expansion

TABLE OF CONTENTS

	ABS	TRACT	. IX
	TABL	E OF CONTENTS	XII
	LIST	DF FIGURES	×٧I
	LIST	DF TABLES	хх
СН	APT	ER 1 INTRODUCTION	1
	1.1	INTRODUCTION	1
	1.2	BACKGROUND AND MOTIVATION	1
	1.3	OBJECTIVES	4
СН	APT	ER 2 LITERATURE REVIEW	5
	2.1	INTRODUCTION	5
	2.1.1	Glass	5
	2.1.2	Glass-Ceramic (GC)	9
	2.1.3	Thermal expansion of solids	13
	2.2	LOW THERMAL EXPANSION GC	17
	2.2.1	Crystal systems in lithium aluminosilicate	19
	2.2.2	Origin of anomalous thermal expansion	26
	2.3	ROLES OF CONSTITUENTS	29
	2.3.1	Lithia (Li2O), Alumina (Al2O3) and Silica (SiO2)	33
	2.3.2	Magnesium oxide (MgO) and Zinc Oxide (ZnO)	33
	2.3.3	Titanium Oxide (TiO ₂) and Zirconium oxide (ZrO ₂)	34
	2.3.4	Phosphorous pentoxide (P_2O_5)	36
	2.3.5	Boron Trioxide (B2O3)	38
	2.3.6	Other constituents	39
	2.4	EVOLUTION OF CRYSTALLINE PHASE AND ITS MICROSTRUCTURE	40
	2.5	CRYSTALLISATION KINETICS	41
	2.6	OTHER WAYS OF MAKING LAS GLASS OR CERAMIC	45

	2.6.1	Sol-gel synthesis	45
	2.6.2	Other solid-state routes	46
	2.7	PROBLEM DEFINITION AND APPROACH	47
	2.7.1	Scope of the thesis	49
СН	APTE	CR 3 CRYSTALLISATION STUDIES ON LAS GLASS USING	
MI	CROV	VAVE-HYBRID HEATING	50
	3.1	INTRODUCTION	50
	3.2	EXPERIMENTAL	52
	3.2.1	Glass formation	52
	3.2.2	Microwave-assisted heat treatment	53
	3.2.3	Characterization	55
	3.3	RESULTS AND DISCUSSION	56
	3.3.1	Identification of optimum crystallisation temperature (T _c)	58
	3.3.2	Optimization of CTE to near zero value	65
	3.4	CONCLUSIONS	69
СН		R 4 THERMOANALYTICAL STUDIES ON SITE-SATURATED LAS	
	API		
	ASS		70
	ASS		
	ASS		70
	ASS 4.1	INTRODUCTION	70 70
	ASS 4.1 4.2	INTRODUCTION	70 70 71
	ASS 4.1 4.2 4.3	INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION	70 70 71 74
	ASS 4.1 4.2 4.3 4.3.1	INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION Heating rate dependence of transformation temperatures	70 70 71 74 76
	ASS 4.1 4.2 4.3 4.3.1 4.3.2	INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION Heating rate dependence of transformation temperatures Activation Energy of Glass Transition	70 70 71 74 76 77
	ASS 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3	INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION Heating rate dependence of transformation temperatures Activation Energy of Glass Transition Fragility Index (F)	70 70 71 74 76 77
	ASS 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4	INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION Heating rate dependence of transformation temperatures Activation Energy of Glass Transition Fragility Index (F) Thermal Stability (TS)	70 70 71 74 76 77 78 79
	ASS 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION Heating rate dependence of transformation temperatures Activation Energy of Glass Transition Fragility Index (F) Thermal Stability (TS) Evaluation of Avrami parameter	70 70 71 74 76 77 78 79 81

4.4	CONCLUSIONS	89
CHAPT	ER 5 INFLUENCE OF P2O5 IN PROCESSING LAS GC THROUGH B	ULK
AND SIN	NTERING ROUTE	90
5.1	INTRODUCTION	90
5.2	EXPERIMENTAL	91
5.2.1	Glass making	91
5.2.2	High-temperature shrinkage study using dilatometer	92
5.2.3	Differential Scanning Calorimetry (DSC)	92
5.2.4	GC processing	93
5.2.5	Characterisation of GC	94
5.3	RESULTS AND DISCUSSION	95
5.3.1	High-temperature dilation behaviour and effect of P_2O_5 in LAS glass	95
5.3.2	Identification of optimum processing temperature from DSC results	98
5.3.3	Phase constitution	
5.3.1	. Sinterability and thermal expansion of LAS glasses	105
5.3.2	. Features of transparent GCs	
5.4	CONCLUSIONS	114
CHAPT	ER 6 CRYSTALLISATION AND SINTERING STUDIES ON AN	
ANOMA	LOUS LAS GLASS TOWARDS MAKING TUNABLE EXPANSION	
CERAM	IC	116
6.1	INTRODUCTION	116
6.2	EXPERIMENTAL	117
6.3	RESULTS AND DISCUSSION	119
6.3.1	Characteristic temperatures	
6.3.2	Enthalpy of structural relaxation	
6.3.3	Crystallisation parameters	
6.3.4	GC Processing through Sintering Route	
_6.3.5	Processing alumina-las glass composite	135

6.5	CONCLUSIONS	140		
CHAPTER 7 LIMITATIONS, SUMMARY AND FUTURE SCOPE				
7.1	LIMITATIONS	141		
7.2	SUMMARY	144		
7.3	FUTURE SCOPE OF WORK	145		
APPENDIX-A: LASER GLOW TEST ON THE ULEGC DEVELOPED149				
APPENDIX-B: MEASUREMENT DETAILS154				
REFERENCES				