
Analysis by proof and verification of an abstract
algorithm for distributed irregular tree processing

Astrid Kiehn Sriram Kailasam
School of Computing and Electrical Engineering

IIT Mandi
Mandi (H.P.) - 175005, India

astrid@iitmandi.ac.in, sriramk@iitmandi.ac.in

Abstract—In the domain of irregular tree processing, two level
load-balancing strategies are most commonly used. Static load
balancing is performed initially based on task estimates while
dynamic load balancing is performed during run-time to deal
with skewed load conditions. A particular variant of this strategy
based on a master-worker architecture has been implemented for
concept mining in the area of Formal Concept Analysis, [1]. It has
been equipped with an additional component for fault tolerance
in [2].

In this paper we propose an abstract algorithm for irregular
tree processing generalising the strategy used in [1] for concept
mining. We prove deadlock-freedom and termination correctness.
We investigate this algorithm further by creating PROMELA
models of increasing level of abstraction to be able to analyse
it with the SPIN model checker. For the most abstract and
compact model we verify that there is no loss or addition of work,
deadlock-freedom, termination, and the ability of workers to act
as stealers and as donors in the same run. Finally, this model is
extended by the features to adjust to fail-stop errors of workers
guided by the implementation of [2]. While the earlier properties
remain valid (modified wrt. failure of workers), adjustment to a
loss of workers is also verified.

Index Terms—Verification, Load-Balancing, Work-Stealing Al-
gorithm, Irregular Tree Processing

I. INTRODUCTION

Irregular tree processing is characterized by a highly skewed
structure of the computation tree. Distributing this tree evenly
on a cluster of machines is challenging as the tree is gener-
ated dynamically, and the number of nodes in the sub-trees
is highly uneven due to branching and pruning operations.
These problems are found in several domains such as simu-
lation/modeling, AI, discrete optimization, etc. [1], [3]–[5]. A
good and recent introduction to the field can be found in [6].

In irregular tree processing, initially, there is only the root
of the tree; the child nodes are generated as part of the
processing. When child nodes are generated, they temporarily
are leaf nodes with less work compared to their parent nodes.
When a leaf node is processed it either unfolds and becomes
the parent of new child nodes or it is pruned. As unfolding
and pruning is not predictable, a static distribution of the
child nodes among various machines causes load imbalance.
Hence, dynamic load balancing (DLB) strategies are used.
These strategies can be broadly divided into receiver-initiated
(work stealing) and sender initiated (work sharing) schemes.
Machines act as so-called workers which can process, steal

or donate work items. In the work stealing scheme, a worker
without work steals work from some donor machine, whereas
in the work sharing scheme a worker assigns some of its
work to other workers. Generally, work stealing strategies are
more communication efficient than work sharing ones as the
communication is initiated only when a worker becomes idle.

Work stealing is implemented either in master-worker ar-
chitecture or peer-to-peer architecture. In master-worker, the
master enables stealing of tasks. In peer-to-peer architecture,
each worker maintains a view of all other workers and requests
work from its neighbors (locality sensitive) or from some
random worker [7]. The main challenges in distributed irregu-
lar tree processing are keeping the communication costs low,
selecting the worker which is most appropriate for stealing
or donating work, optimizing the size of work item that can
be stolen, and determining termination of the entire system.
In the master-based scheme the main strategy employed to
tackle communication costs is that workers send their updates
to the master only when their estimated load becomes half. In
peer-to-peer schemes, each worker maintains its own estimate.

Over the last two decades, we see a large number of
scalable systems built using master-worker architecture (e.g.
MapReduce [8], Apache Spark [9], etc.). This architecture
facilitates better co-ordination and control amongst workers
compared to peer-to-peer architecture.

In this paper we consider a master-based system. Master-
worker schemes can be classified into master-heavy and
master-light schemes based on the amount of work performed
by the master. In master-heavy scheme, the master maintains
the list of unexplored tasks and assigns them on requests of
idle workers. These schemes do not scale to large number of
workers as the master becomes a bottleneck [10]. In contrast,
in the master-light schemes, the master only maintains meta-
data about the workers. The master maintains the list of poten-
tial donors ordered by their estimated workload. When an idle
worker sends a request to the master, the master immediately
returns the most loaded worker thereby facilitating efficient
donor lookup. The actual exchange of work is performed
between the donor and the requester. These schemes have
better scalability as the tasks are maintained locally at the
worker’s end [1], [11]. The size estimate of the sub-trees
assigned to a worker helps to avoid small task stealing.

The master-light scheme of the implementation described in

[1] has been shown to effectively deal with the computation
skew of irregular tree processing. In this paper we extract
the strategy employed in [1] to be applicable for irregular
tree processing in general. In the implementation each worker
uses a double ended queue (deque) for storing work items
(deques are also used in other implementations, see [12]). The
work items are kept in decreasing order of their estimates.
For exploration (processing), the worker pops a work item
from the bottom of the deque (low estimate end), and – if
it is not consumed – generates its child items and pushes
them to the bottom in the decreasing order of the estimates.
This way of exploring work items bounds the total size of
the deque (during execution) to be equal to the maximum
degree of the computation tree. The worker donates work
items from the top of the deque (high estimate end). The item
at the top is the largest work item, with its estimate about
half of the total queue. Thus, a worker can offload half its
load by donating a single work item, thereby reducing the
communication overhead. The master maintains estimates of
the work available at each worker and enables constant time
lookup of donors. The overall estimate kept by the master
may be inaccurate occasionally due to delayed updating of
the worker. However, it only affects the performance not
correctness of the algorithm.

Our proposed algorithm abstracts from any particular ap-
plication but simply considers work items to be assigned,
consumed, split and donated. As in [1], it uses deques. Work
items can be split into two (but any other number could have
been taken) of which the sizes are not specified. The choice
between finishing a work item and splitting it into smaller
items is modelled as a non-deterministic choice to cater to a
wider range of applications. We prove that this algorithm is
deadlock-free and that termination happens if and only if all
workers have finished their work load.

This algorithm was developed using the model checkers
UPPAAL [13] and SPIN [14]. UPPAAL was mainly used to
design the algorithm in a model-driven manner [15]. SPIN
was employed for the verification of linear time properties
and larger models. For small parameters (workload, number
of workers), deadlock-freedom and termination if and only if
all workers terminated, could be verified in UPPAAL and in
SPIN. However, this model and a variant without non-progress
cycles turned out to be too complex for exploring all the
features of the algorithm. We therefore created a more abstract
version by replacing the deque of a worker by the accumulated
load, only. The resulting algorithm was explored in SPIN in
depth and found to satisfy the required properties: no work
gets lost or duplicated, deadlock-freedom, termination only in
case of all workers completed their work, workers can donate
or steal more than once, workers can take the role of a donor
and a stealer in the same run, and different pairs of workers
can engage concurrently in work stealing conversations.

This last, compact model is then enriched by the features of
[2] to achieve fault tolerance. [2] uses ZooKeeper [16], an open
source distributed coordination service, for detecting worker
failures. ZooKeeper stores information in znodes. It allows

setting watches on znodes that get triggered when the znode
is deleted, or its data is changed, etc. All the workers create
their respective znodes at the start of the computation and set a
watch on the next worker’s znode, thereby establishing a ring
of watchers. When a worker fails, its znode disappears auto-
matically and the watcher process gets notified by ZooKeeper.
Thus, watches are used for monitoring workers in [2]. In the
model, we added a ZKeeper process (for the ZooKeeper), a
watch ring, the option of a worker to fail and a time-out if a
donor failed to react. Znodes are not explicitly modelled, their
behaviour is subsumed by the worker’s.

For this extended model, we reconfirm the properties veri-
fied earlier where termination was adjusted to happen if and
only if all workers had either completed their work or had
failed. Additionally, we verified several other properties related
to failure.

Up to our knowledge this is the first work stealing algorithm
that has been modelled and verified with a model checker.
The main challenge in modelling such algorithms is that the
work load needs to be incorporated into the model and cannot
completely be abstracted of. This leads to an explosion of the
state space which grows in terms of the number of workers and
the amount of work. However, to establish the most interesting
properties of independent worker conversations four workers
and four work items are sufficient. The details of the ideal
algorithm, its pseudo code and the basic correctness proof is
given in Section II. Section III introduces the various models
and assumptions concerning the failure of a worker. Section
IV summarizes the properties verified for the scenario of four
workers and varying loads. It also contains the link to the
SPIN models for self-exploration. The conclusions are given
in Section V.

II. THE ABSTRACT ALGORITHM

The proposed algorithm for irregular tree processing as-
sumes no failures of workers, the master or channels. We
make the usual progress assumption: whenever a worker or
master is at a location from which it can proceed, it eventually
will do so. There are no shared data, and communications
between master and workers and among workers themselves
is solely based on message passing handshake communication.
The master maintains an estimation of each worker’s load
(estimate[worker]) and two FIFO queues, PR and PU
to store pending requests and pending updates, respectively.
Each worker is equipped with a double ended queue DQ to
buffer its current work. See the discussion in the introduction
for the design decision to access the work item queue from
both ends.

The system starts with the initial load allocation to the
workers by the master. A load consists of several work items
which are represented by its size. For example, the work
load of a worker can consist of the work items 4,2,1,1 and
its load would be 8, the sum of the sizes. Each worker
keeps its work items in its double ended queue DQ. A
work item may be either processed (finishItem()) or
be split into two smaller items (splitItem()). The work

items for this internal work are taken from the bottom of
DQ (popBot(DQ)). The splitted items are added again at
the bottom of DQ (pushBot(item,DQ)). If a worker has
processed all its items and its DQ is empty, it will request the
master to send a donor id (requestDonor[worker]!).
Based on its estimates, the master assigns a donor with the
currently highest estimate or defers the worker’s request by
enqueuing it in the pending request queue PR or initialises
termination of the overall system. Upon the receipt of a donor
id, a worker will request this donor for work. If the donor
has work to donate, it will take it from the top of its DQ
(popTop(DQ)). However, it can also refuse to donate in
case its workload is below a given threshold. In that case the
work requester will ask the master to send another donor id.
The master maintains its estimates by means of the updates
given by the workers. Work loads below the threshold do not
contribute to the estimate. However, the estimate of the work
which, in principle, can be donated is never an underestimate.
Workers update the master if the current workload has shrunk
below half the load it had reported earlier to the master or if
they have received a donation. Assigning a donor, the master
immediately reduces its estimate of the donor’s load by half.
The master adds donor requesters to the pending updates queue
PU to take record of which workers have an unknown work
load.

It may happen that the master’s overall estimation is zero
though there is still work available. Such a situation can arise
if a donation has been received but the receiver has not yet
updated the master. If, before the update, the other workers
finish all their work, the overall estimate is zero. A worker
requesting a donor at this time will be added to the pending
request queue. Therefore, after each incoming update, the
master checks whether a worker in PR can be released by
giving it some work.

The master initializes termination if its overall estimation
is zero and there is no pending update (PU is empty). In the
termination phase, a worker requesting for a donor will get
the signal to terminate.

The pseudo code is given in Algorithm 1 and Algorithm 2.
The functions and channels used are as follows:

Master: determineDonor() yields a worker with the
highest estimate, zeroEstimate() is true if the accumu-
lated estimate is 0, posEstimate() is true if the estimate is
greater than 0, getFirst(PR) yields the first worker in PR
without removing it, empty(PU) (empty(PR)) is true if
PU = ε (PR = ε) and false otherwise,

Worker: pushBot(X,DQ) (pushTop(X,DQ)) adds X
at the bottom of DQ (at the top of DQ), popBot(DQ)
(popTop(DQ)) yields the bottom elenent of DQ (the top
element of DQ) and removes it, finishItem() consumes
a work item, splitItem(W) yields a pair of work items
(W1,W2) where each of them is of half of the size of W,

Communication Channels:
between Master and Worker i: updateMaster[i](W),
requestDonor[i], getDonor[i](D),
terminateWorker[i], startWork[i]

between Workers i and j: requestWork[i][j],
getWork[i][j](W), refuseDonation[i][j]:
the sending of a message via a channel is indicated with !
and the receipt with ?. If the message is not just a signal, the
message contents is given by W for work items and by D for
donors ids. The channel names are self-explanatory.

The pseudo code uses non-deterministic guarded selection
statements as introduced by Dijkstra [17]. While it is easily
understood that the algorithm helps to balance work, it is not
obvious at all that the system is free of deadlocks. We prove
deadlock-freedom and absence of premature termination in the
next section.

Algorithm 1 Master’s algorithm
1: PU:= ε, PR:= ε, threshold := C
2: terminatedMaster := false, terminationCount := 0, terminating := false
3: estimate[i] := Wi for all workers i
4: donor . initially undefined
5: functions: zeroEstimate(), posEstimate(), empty(), getFirst(), determine-

Donor()
6:
7: for all workers i do startWork[i]!(Wi)
8: while not terminatedMaster do
9: if

10: :: requestDonor[i]? =>
11: estimate[i] := 0;
12: remove i from PU;
13: if zeroEstimate() and empty(PU) then
14: terminating := true;
15: terminateWorker[i]!
16: terminationCount := terminationCount +1
17: else
18: if zeroEstimate() then
19: enqueue i in PR
20: else
21: donor := determineDonor();
22: enqueue i in PU;
23: estimate[donor] := estimate[donor]/2;
24: getDonor[i]!(donor)
25: :: updateMaster[i]?(W) =>
26: remove i from PU;
27: if W > threshold then
28: estimate[i] := W;
29: while not empty(PR) and posEstimate() do
30: j := getFirst(PR);
31: remove j from PR;
32: donor := determineDonor();
33: enqueue j in PU;
34: if estimate[donor]/2 > threshold then
35: estimate[donor] := estimate[donor]/2
36: else
37: estimate[donor] := 0;
38: getDonor[j]!(donor);
39: else
40: estimate[i] := 0;
41: if zeroEstimate() and empty(PU) then
42: terminating := true;
43: :: terminating =>
44: while not empty(PR) do
45: j := getFirst(PR);
46: remove j from PR;
47: terminateWorker[j]!;
48: terminationCount := terminationCount + 1
49: :: terminationCount = number of workers =>
50: terminatedMaster := true

Algorithm 2 Worker i’s algorithm
1: terminated := false
2: DQ := ε, pendWork := 0, lastUpdate:=0
3: functions: pushTop(), pushBot(), popTop(), popBot(), finishItem(), spli-

tItem()
4:
5: wait for startWork?(W)
6: pushTop(W,DQ); pendWork := W, lastUpdate:=W
7: while not terminated do
8: if
9: :: not empty(DQ) =>

10: if
11: :: bottom(DQ) > threshold => W := popBot(DQ);
12: (W1,W2) := splitItem(W);
13: pushBot(W1,DQ); pushBot(W2,DQ);
14: :: true => W := popBot(DQ); finishItem(W);
15: pendWork := pendWork - W
16: :: pendWork < lastUpdate/2 => updateMas-

ter[i]!(pendWork)
17: lastUpdate := pendWork
18: :: empty(DQ) =>
19: requestDonor[i]!
20: while not terminated & donor not received do
21: if
22: :: requestWork[j][i]? =>
23: refuseDonation[j][i]!
24: :: terminateWorker[i]? =>
25: terminated := true;
26: :: getDonor[i]?(donor) =>
27: requestWork[i][donor]!
28: if ...wait for donor response...
29: :: getWork[i][donor]?(W) =>
30: pushTop(W,DQ); pendWork := W;
31: lastUpdate := pendWork;
32: :: refuseDonation[i][donor]? => skip;
33: updateMaster[i]!(pendWork)
34: :: requestWork[j][i]? =>
35: if
36: :: pendWork < threshold =>
37: refuseDonation[j][i]!;
38: updateMaster[i]!(pendWork)
39: :: pendWork ≥ threshold =>
40: W := popTop(DQ);
41: getWork[j][i]!(W);
42: pendWork := pendWork - W;
43: updateMaster[i]!(pendWork)
44: lastUpdate := pendWork

Correctness and Deadlock Freedom

The FIFO queues of pending updates and of pending re-
quests, PU and PR can be manipulated by the master only, and
this can happen only in connection with the communication
with a worker. In the following we prove deadlock freedom
where the number of workers is assumed arbitrary but fixed.
Note that live-locks are possible as will be discussed later.

Lemma II.1. 1) If a worker is in PR then it is waiting for
a donor or for the request to terminate (at line 21 or
23, worker alg.), and its work estimate maintained by
the master is 0.

2) A worker is added to PR only after having been removed
from PU (lines 12 and 19 of master alg.)

3) A worker is removed from PR only if it is assigned a

donor (line 29 - 38, master alg.) or it is requested to
terminate (line 47, master alg.). In the former case it is
added to PU after its removal from PR.

4) A worker can request for a donor only if it is neither in
PR nor in PU.

5) A worker is added to PU if and only if it gets a donor
assigned (line 24 and line 37, master alg.). If this
happens immediately on its request, the worker was not
in PR by (4). Otherwise, the worker is removed from PR
prior to its addition to PU (line 31, master alg.).

6) A worker can be in PU or in PR but not in both of them
at the same time.

7) A worker is removed from PU only if this worker updates
the master or it requests a donor.

8) If a worker is at line 8 (worker alg.) it cannot be in PU.

Proof. 1) When a worker requests for a donor, it is at line
19 in the worker alg. It is waiting for a response from
the master, which can be either donor id or request to
terminate (line 20, worker alg.). The master adds the
worker to PR only if it requests a donor (lines 10-19,
master alg.). At the time of adding the worker to PR, the
overall estimate is 0 (line 18, master alg.). This estimate
is updated only when the worker sends an update. As
the worker is waiting, the estimate continues to be 0 as
long as the worker is in PR. A worker is removed from
PR either before it gets a donor assigned or the request
to terminate (line 31 and 42).

2) obvious.
3) If a worker is in PR by (1) it is at line 21 or 23 (worker

alg.). The while loop at line 20 can be left only via
going through line 25 or line 29. In the former case,
the terminate message implies removal from PR by the
master. In the latter case, the master had removed the
worker from PR with the donor assignment.

4) This invariant can be proven by induction of the number
of repetitions of the while loop at line 7 (worker alg.).
Initially, PU and PR are empty. The worker is added to
PU or PR only when it makes a donor request (lines
10, 19 and 22 in master algorithm). Thus, for the first
time when the worker requests for a donor the property
holds.
After making a request for a donor, the worker enters the
while loop at line 20. For the outer while loop to execute
again (for the worker to make a request for donor), the
worker must have a getDonor[i] event and then send an
update to the master at line 33. This ensures that the
worker is removed from PU. If the communication for
the getDonor[i] event occurred via line 34 of the master
algorithm then the worker had been removed from PR at
line 31. If the communication was via line 24 then the
worker had not been added to PR since it last entered
the while loop body. Hence by induction hypothesis, it
was not in PR.

5) by (2) and (4).
6) by (2), (4) and (5).

Fig. 1. The UPPAAL master template of ITP .

Fig. 2. The UPPAAL worker template of ITP .

7) by code inspection.
8) similar as the proof of (4). A worker is added to PU

only when a donor gets assigned (5). When the worker
receives the donor id from the master it is at line 26.
It updates the master at line 33, before re-entering the
body.

Lemma II.2. 1) If two workers engage in a work donation
then they will also complete this communication, that is,
if a requestWork communication happens then there
will also be an answer by the donor.

2) As long as the master has not terminated it can always
complete the body of the selected option (i.e. it can
return to line 9, master alg.).

3) If a worker is deadlocked it is either in PR (at line 21,
worker alg.) or waiting to communicate with its donor
(line 27, worker alg.) in its code.

Proof. 1) follows directly from the code: there are no
alternatives for a worker not to complete an interaction,
and one of its guards always evaluates to true.

2) If there was a donor request (but no donor assignment,
yet), the respective worker is at line 21 or 23 in its code
and hence, able to receive the master’s reply. Similarly,
if there was an update event and a communication with
a worker is required, then this is due to releasing a
worker from PR. This worker at line 21 or 23 by Lemma
II.1(4)). By (1) it is able to communicate.

3) A process can only deadlock if its communication
partner is not responding. Thus, a worker can always
finish its work items. By (1) and (2) it cannot be stuck
between line 36-44. So if there is a deadlock, it must
occur between lines 22-32. Again by (1) and (2), this
can only happen at line 21 and line 27.

Theorem II.3. 1) The algorithm is deadlock-free.
2) If the master has terminated all the workers have

terminated and all work items have been consumed (up
to the final threshold).

3) If all workers have terminated, the master will terminate
as well.

Proof. of 1. Suppose there is a deadlock. Let us first assume
the overall state is terminating (terminating = true in
Algorithm 1 line 42–43). The overall estimate must be 0 and
PU must be empty. Further, no worker can be in PR (the master
would have terminated all those workers by Lemma II.1(1)
, Lemma II.2(2)). Hence by Lemma II.2(3), any deadlocked
worker has to be waiting for a donor at line 27. However, by
Lemma II.1(7), such a worker must be in PU, a contradiction.
Hence, the overall state cannot be terminating.
So if there is a deadlock, the system is not terminating.
Since workers cannot have terminated they must be stuck
either in PR or be waiting for a donor at line 27 (Lemma
II.2(3)). Hence, the overall estimate is 0 and PU is non-empty
(otherwise the system would be terminating). Suppose there

are k workers in PU. Out of these k workers, let i be the
worker that joined PU last and let j be the worker that had
been assigned as its donor. Since, all workers in PU have an
empty estimate, and j must have had a positive estimate at
the time of donor assignment, j could not have been in PU
or PR. Hence, when j later requested a donor – as it couldn’t
terminate – the overall estimate was 0 (otherwise, j would
have been added to PU). So it was added to PR and entered
the while loop at line 20. But then it could have interacted
with i via requestWork[i][j] and refuse to donate. So i was
able to update the master after this and was removed from PU,
contradicting that it was in PU at the time of the deadlock.

Note that the algorithm allows for a work item being
stolen and immediately donated repeatedly among a number
of workers. However, this can be easily fixed by enforcing a
worker to immediately work on an item stolen (by inserting
the code between line 11 -17 at line 30 after line 30). Another
solution is discussed in Section III.

III. THE MODELS

The main objective of our work was to show fault tolerance
of the system in [2] and, in broader terms, of our work stealing
algorithm for irregular tree processing. We first modelled
the system without any provision addressing worker failure.
Though we had a mathematical proof of deadlock-freedom,
it had to be ensured that the model was faithful to the
pseudo code. We created three models for the fault-free case,
increasing the level of abstraction to reduce the complexity of
the system.

A. Models for the Ideal System without Worker Failure.

Our first model, ITP faithfully modelled the double ended
queues and their manipulations (on an abstract level, barriers
e.g. were ignored) with respect to the pseudo code. This model
turned out to be too complex to verify the most interesting
properties. None of our model checkers (we used SPIN and
UPPAAL) could deal with four workers and a non-trivial load
(at least four work items). Four workers are required to let
two pairs of workers independently engage in a work donation
conversation. By this we mean that if two workers have the
load of two work items each and the other two none, the master
can assign the former as donors to different workers. The two
resulting work request/donate conversations are independent of
each other. Though this could not be verified, still, the model
was useful for simulations and for testing particular runs of
the system. For three workers, the maximal workload that the
model checkers could deal with was three work items.

In the sequel, whenever we refer to a particular model it is
understood to be the SPIN model if not otherwise clarified.
Work assignments are given as vectors (v1, . . . , vn) where n
is the number of workers and vi the (accumulated) initial work
assigned by the master to worker i.

It was observed that the complexity of ITP was partially
due to non-progress cycles. These are subruns which lead to
configurations already gone through. A worker steals work and
immediately donates it to the next worker who, again, donates

c1 [](initialisationDone -> noWorkLost)
c2 [](masterTerminated -> terminationNotified[0] && terminationNotified[1] &&

terminationNotified[2] && terminationNotified[3])
c3 <> masterTerminated
c4 <> (terminated[0] && terminated[1] && terminated[2] && terminated[3])
c5 [](stealerRoleCount[0]<2)
c6 [] !(stealerRoleCount[0]==1 && donorRoleCount[0]==1)
c7 [] !(stealerRoleCount[0]==1 && stealerRoleCount[1]==1

&& donorRoleCount[0]==0 && donorRoleCount[1]==0 && donorRoleCount[2]==0
&& donorRoleCount[3]==0 && donorOf[0]==3 && donorOf[1]==2))

cf4 <> ((terminated[0]||failure[0]) && (terminated[1]||failure[1]) &&
(terminated[2]||failure[2]) && (terminated[3]||failure[3]))

f1 [] (!failure[3]) //to be refuted
f2 [] failureCount<N
f3 [] (failure[3] -> failureCount>=1)

Fig. 3. Claims to be verified or refuted.

it to the next worker. If this repeats until the particular work
item is back at the first worker donating it, this constitutes a
non-progress cycle.

Such non-progress cycles were allowed by the pseudo code
as we did not want to constrain the implementation to when
and where to enforce the progress (of work consumption or
split) and to keep the code simple. In the implementation in [1]
progress is ensured by enforcing a worker to immediately do
some work when it receives a donation. For the pseudo code
this means line 30 of the worker code needs to be replaced
by a copy of lines 11-17.

In ITP-nnPC such non-progress cycles were removed by
two changes:
(a) A worker is not permitted to donate work if there is only
one work item in its deque (independently of the size of the
item).
(b) If a worker refuses to donate a work item (because of (a)),
it has to split or finish the item immediately after the refusal.
The two constraints ensure that with each assignment of a
worker as a donor, its accumulated work either reduces or the
length of its deque increases by one. Hence, at its next donor
assignment it either has less work or it cannot refuse to donate
and by that it will reduce its load. Note, that (a) alone would
would still permit non-progress cycles as the same donor can
be assigned to the potential stealer after it had received a
refusal earlier. Other non-progress cycles resulted from the
way termination was communicated in ITP . These cycles
were also removed by the master terminating all workers once
there is no estimate and no pending update. The model was
checked for absence of non-progress cycles.

With ITP-nnPC we were able to verify deadlock-freedom
for four workers and the load of (0,0,2,2) and (0,0,1,3) while
for load (0,0,0,4) the entire state space could not be explored
by our SPIN system. However, it should be noted that the latter
load assignment would yield symmetric load configurations
(0,2,0,2) and (2,0,0,2), and (0,0,1,3),(0,1,0,3), and (1,0,0,3) for
which the results were available.

To sum up, ITP-nnPC allowed us to verify deadlock
freedom and independent engagements of 2 worker pairs.

However, it was too complex to add any fault tolerant feature
without going beyond the limits of our model checker system.

For the third model, ITP-compact we rigorously abstracted
from the deques by simply maintaining the overall workload
of a worker (master estimations were not affected by this). In
case of a donation request, a worker either
(i) donates half of its pending work1, or
(ii) reduces the pending work by 1 (processing work).
Work refusal would only happen in case of a work load less
than or equal to 1. In the latter case the item has to be
consumed immediately after the refusal to ensure progress.

As expected, ITP-compact significantly performed better
than the other two. However, even for ITP-compact the
maximal load for which we could verify deadlock-freedom for
four workers was (0,0,2,4). Approximate time for verifying
deadlock-freedom for four workers and the given load in
the various models is given in Table I. We used SPIN on a
DELL machine Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz
with 16GB RAM. We used exhaustive state space exploration
with collapse compression, depth first search and partial order
reduction. As directed by SPIN, extra compilation directives
were applied when recommended which reduced the required
memory on the cost of longer run-time. For all models it
can be observed that there is a considerable increase of time
and number of states when the load (0,1,1,2) is increased to
(0,0,2,2). Several factors contribute to this. An individual load
of 1 can only be consumed and not donated by a worker. It
will not contribute to the estimate computed by the master.
So with load (0,1,1,2), the master’s initial estimate is 2, and
with (0,0,2,2) it is 4. With load (0,0,2,2), two donations can
happen independently. If a stealer delays updating the master,
it may result in other workers being added to the pending
request queue in varying order. All this contributes to the
state space. Further, in the ITP-nnPC model, deques are
modelled explicitly which increase the state vector. Compile
directives given by SPIN lead to an immense slow down of
the compilation. The arguments given also explain why the

1in case the load is odd, it is the floor of half of work. In this case it is
assumed that one item has been processed before the donation.

increase of time and space from the loads (0,0,0,2) to (0,1,1,2)
is small.

B. Model for the System with Worker Failure.

To verify the resilience property with respect to worker
failure we incorporated into ITP-compact the possibility of a
worker to fail, the watches of workers and a process known as
ZKeeper to handle reports of failure (representing ZooKeeper).
Again, to cope with the state space explosion, the resulting
model is highly abstract.

The Failure Model The failing of a worker affects another
worker only if it is engaged in a conversation with it. If a
designated donor fails before it has delivered the work to the
requesting stealer, the stealer needs to be released from the
state of waiting and provided a new donor. A similar situation
arises when the dedicated donor fails before the potential
stealer can place its request. For both these situations time-
outs are introduced which allow the worker to move on and
request for a fresh donor as in the case of a donation refusal.
In our model we therefore only incorporate the failing of a
worker after it received a donation request. We do not model
work recovery, in the model the work in the deque of a failing
worker gets simply lost. Further, the master and ZKeeper are
assumed not to fail at any point of a computation.

In the implementation of [2], a watch ring is established
among the workers for detecting and recovering from worker
failures (see Section I). When a worker fails, it is noticed
by ZooKeeper by the absence of heart-beat. ZooKeeper then
notifies the previous worker (alive) in the ring. That worker
performs the recovery tasks to ensure at-least-once semantics
of the system. ZooKeeper is a passive entity executing basic
commands on the requests of workers, only, it is reliable and
assumed not to fail. Hence, in our model, the two separate
events are rendered as one, that is by the watcher observing
the failure of a worker directly. After the repair work, the
watcher requests a new watch from ZooKeeper which reacts
with its delivery. These two events are not abstracted from as
the watch ring is a relevant data structure for all processes and
workers can fail concurrently. In ITP-ZooKeeper the book-
keeping tasks (removing the failed worker from pendPU etc.)
performed by the master in [2] (after having been notified by
ZooKeeper) and the re-establishing of the watch ring, are done
by ZKeeper. This can be seen as another way to speed up
the progress of the overall computation or to reduce the state
explosion. The delay the master would take in updating its
records can be seen as modelled in the delay that ZKeeper
takes to do it.

For potential stealers waiting for the assigned donor to
communicate, time-out transitions have been introduced. After
the time-out, the worker updates the master. This again is a
form of progress enforcement as with the update the worker is
considered as idle and termination can be announced in case
there are no other pending updates.

IV. VERIFICATION RESULTS

As the first model checker we had chosen UPPAAL. Its
GUI helped considerably in the initial phase of the design.
We verified the claims of Proposition II.3 for three workers
and accumulated load 4. The UPPAAL model was then revised
by removing non-progress cycles and adding the fault tolerant
features. This allowed us to verify several properties for loads
up to (0,0,2,2) for four workers. The individual load of 4 for
a single worker, however, could not be handled.

As we later switched to SPIN where the main model
checking was done, we are here only showing the automata
models for a graphical visualisation of the algorithm 1 and 2.
It should be easy to match the codes given in Algorithm 1 and
2 with these templates.

For the SPIN models, properties were verified for up to
four workers and maximal loads of (0,1,1,2) in ITP-nnPC ,
(0,0,0,4) in ITP-compact , and (0,0,2,2) in ITP-ZooKeeper
. Apart from deadlock-freedom and freedom of non-progress
cycles, the following properties were established or refuted.
The claims given in brackets refer to the LTL formulas in the
PROMELA code (see Fig. 3).

1) No work is lost or added. (Claim2 c1)
2) If the master terminates, then all the workers have been

notified to terminate. (Claim c2)
3) Eventually the master terminates. (Claim c3)
4) Eventually all workers terminate. (Claim c4)
5) A worker can steal work more than once. (Claim c5 to

be refuted when the load is sufficient.)
6) A worker can act as a donor and as a stealer. (Claim c6

to be refuted when the load is sufficient.)
7) Two pairs of workers can engage currently in a work

donate conversation. (Claim c7 to be refuted when the
load is sufficient.)

Property 5 was checked for the first worker with the overall
load (0,0,2,2). In ITP-ZooKeeper , the role of a worker as a
stealer and as a donor in a single execution was established
for the first worker with overall loads (2,2,0,0) and (0,0,0,4).
With the latter it was verified that a worker can donate part of
its stolen work. Property 7 was deduced by establishing that a
state can be reached with workers 0 and 1 shown in the stealer
role while the assigned donors have not yet acknowledged the
donation by incrementing the donor role count. Both the role
counts are increased by the donor.

For the fault tolerant model, apart from checking the ab-
sence of deadlocks, we re-verified the above properties of
which the fourth had to be adjusted to the possibility of failure
(claims cf4). It was then verified that up to three workers can
fail within a run. The last worker can not fail as there is no
watcher to communicate with in the model.

The core of the PROMELA code of ITP-ZooKeeper is
shown in Figures 4, 5 and 6 in the appendix. Inline statements
and the states final and dead are not shown. The variable

2The respective ghost variables and their manipulations are not shown in
the code. noWorkLost states that the current overall pending work plus the
number of work items consumed equals the initial overall work.

TABLE I
VERIFICATION RESULTS MODEL-WISE. THE FIRST NUMBER GIVES THE APPROXIMATE TIME FOR VERIFYING DEADLOCK FREEDOM FOR FOUR WORKERS
AND THE GIVEN LOAD. THE SECOND ENTRY PROVIDES THE APPROXIMATE NUMBER OF STATES STORED. PARTIAL ORDER REDUCTION AND COLLAPSE

COMPRESSION WAS APPLIED IN ALL CASES.

Model (0,0,0,2) (0,0,1,2) (0,1,1,2) (0,0,2,2) (0,1,2,2) (0,0,0,4) (0,0,2,4)
ITP-nnPC 7.72 sec 8.52 sec 11 sec 12.5 min 33 min > 29 hours ?

3,825,000 4,336,547 4,937,513 2.703e+08 3.183e+08 > 1.0200e+09 ?
ITP-compact 0.18 sec 0.19 sec 0.23 sec 3.26 sec 3.4 sec 4 min > 11 hours

110,835 127,786 148,475 1,935,400 2,041,920 99,889,400 > 3.630e+08
ITP-ZooKeeper 3.4 sec 3.7 sec 4.2 sec 50.7 sec 52.6 sec 33.4 hours ?

2,202,000 2,447,400 2,666,300 29,308,900 30,249,700 8.87e+08 ?

masterTerminated is set by the master at the final state.
All inline statements are atomic. To increase readabiliy, atomic
enclosures in the core code which had been added to reduce
the state space, only, are not shown. The claims are given in
Figure 3 and the models can be accessed from our repository3.

V. CONCLUSIONS

We have proposed and verified an abstract algorithm for
distributed irregular tree processing aiming at efficiently deal-
ing with the inherent computation skew. Our work can also
be seen as a case study of model checking a distributed fault
tolerant work stealing algorithm. The main issue was state
explosion: a faithful modelling of the algorithm would not
allow for the verification of essential properties. As the major
remedy, we abstracted deques to size numbers. A similar
bold abstraction step was taken in [18] where fault tolerant
distributed algorithms with a crucial use of threshold guarded
commands were to be model checked (e.g. Paxos). Compared
to that work, we had to deal with three (not just one) kind
of processes (master, ZKeeper and workers) and threshold
guarded commands are nowhere used. Complexity-wise, the
limiting parameters are the number of workers and the size
and distribution of the work load.

Up to our knowledge this is the first work stealing algorithm
that has been modelled and verified with a model checker.
Formal verifications of deques can be found in [19], [20].
A simulator has been implemented in [21]. A verification of
an entire algorithm we couldn’t find. Though we have been
able to verify characteristic properties, it is apparent that more
complex algorithms and properties will be limited by the state
explosion problem. The latter is inherent in work stealing
algorithms as workers are designed to be exchangeable and
this leads to many symmetric configurations. It is interesting
to note that the irregular tree processing algorithm for concept
mining from which we started out [1], is the result of breaking
up symmetries in the computation of concepts. In particular,
duplicate concepts are pruned. It seems that a similar strat-
egy is applicable to break up the symmetries in the model
checking. Further work would also explore a parameterized
approach to the verification.

ACKNOWLEDGMENT

This research is supported by SPARC, a Govt. of India
Initiative under grant no. SPARC/2018-2019/P682/SL.

3https://cloud.iitmandi.ac.in/f/a103fd904cb642f08ae7/?dl=1

REFERENCES

[1] S. Patel, U. Agarwal, and S. Kailasam, “A dynamic load balancing
scheme for distributed formal concept analysis,” in Proc. of 24th IEEE
Int’l Conf. on Parallel and Dist. Syst. (ICPADS’18). IEEE, 2018, pp.
489–496.

[2] A. Khaund, A. M. Sharma, A. Tiwari, S. Garg, and S. Kailasam, “RD-
FCA: A resilient framework for distributed formal concept analysis,”
2020, under submission.

[3] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial
Intelligence, vol. 129, no. 1, pp. 5 – 33, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370201001084

[4] M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[5] G. Di Fatta and M. R. Berthold, “Decentralized load balancing for
highly irregular search problems,” in Symposium on Computers and
Communications. IEEE, 2006.

[6] J. Yang and Q. He, “Scheduling parallel computationsby work stealing:
A survey,” International Journal of Parallel Programming, no. 46, pp.
173–197, 2018.

[7] U. A. Acar, G. Blelloch, and R. Blumofe, “The data locality of work
stealing,” Theory of Computing Systems, vol. 35, no. 3, pp. 321–347,
2002.

[8] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[9] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, p. 56–65, oct
2016.

[10] F. Xie and A. Davenport, “Massively parallel constraint programming
for supercomputers: Challenges and initial results,” in Integration of
AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 334–338.

[11] J. Jaffar, A. E. Santosa, R. H. C. Yap, and K. Q. Zhu, “Scalable
distributed depth-first search with greedy work stealing,” in 16th IEEE
International Conference on Tools with Artificial Intelligence, 2004, pp.
98–103.

[12] U. A. Acar, A. Chargueraud, and M. Rainey, “Scheduling parallel
programs by work stealing with private deques,” in Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’13, 2013, p. 219–228.

[13] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL: Status and develop-
ments,” in CAV 97, ser. LNCS, O. Grumberg, Ed., no. 1254. Springer–
Verlag, 1997, pp. 456–459.

[14] G. J. Holtzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley, 2004.

[15] M. Kühnrich, “Formal model-driven design of distributed algorithms,”
Electronic Notes in Theoretical Computer Science, no. 251, pp. 49–64,
2009.

[16] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX annual technical
conference, vol. 8, no. 9. Boston, MA, USA, 2010.

[17] E. W. Dijkstra, “Guarded commands, non-determinacy and formal
derivation of programs,” Commun. ACM 18 (1975), vol. 18, no. 8, pp.
453–457, 1975.

[18] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder, “Towards
modeling and model checking fault-tolerant distributed algorithms,” in

Model Checking Software, E. Bartocci and C. R. Ramakrishnan, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 209–226.

[19] S. Mutluergil and S. Tasiran, “A mechanized refinement proof of the
chase–lev deque using a proof system,” Computing, no. 101, 2019.

[20] C. van Kampen, “Formal automated verification of a
work-stealing deque,” January 2020. [Online]. Available:
http://essay.utwente.nl/80687/

[21] M. Khatiri, D. Trystram, and F. Wagner, “Work stealing
simulator,” CoRR, vol. abs/1910.02803, 2019. [Online]. Available:
http://arxiv.org/abs/1910.02803

APPENDIX

computeEstimation(cEst)
do
:: Q?requestDonor,id->

estimate[id] = 0; detDonor(id); removeFromPU(id);
computeEstimation(cEst)
if
:: (cEst <= threshold && lenPU == 0) -> terminating = true;

T[id]!terminate; terminationNotified[id]=1;
terminationCount = terminationCount + 1;

:: (cEst <=threshold && lenPU != 0) -> // add to PR
pendReq[lenPR]= id; lenPR++

:: (cEst > threshold) ->
donor = donorOf[id]; pendUpdates[lenPU] = id; lenPU++;
estimate[donor] = estimate[donor]/2
G[id]!getDonor;
fi

:: U?updateMaster,id -> removeFromPU(id)
if
:: (pendWork[id] > threshold) -> estimate[id]=pendWork[id];

computeEstimation(cEst);
R1: if

:: (lenPR !=0 && cEst != 0) -> //serve pending requests
first = pendReq[0]; removeFromPR(first); detDonor(first);
estimate[donorOf[first]] = estimate[donorOf[first]]/2;
pendUpdates[lenPU]= first; lenPU++;
G[first]!getDonor; goto R1;

:: else -> skip
fi;

:: else -> estimate[id] = 0
if
:: cEst== 0 && lenPU == 0 -> terminating = 1
:: else -> skip
fi

fi;
:: terminating && terminationCount != N - failureCount ->
R2: if

:: lenPR !=0 -> first = pendReq[0]; removeFromPR(first);
T[first]!terminate;
terminationNotified[first] =1; terminationCount = terminationCount + 1;
goto R2;

:: lenPR ==0 && terminationCount != N - failureCount ->
i=0;
do
:: i< N && terminationNotified[i]==0 ->

T[i]!terminate;
terminationNotified[i]=1; terminationCount = terminationCount + 1; i++;

:: i <N && terminationNotified[i]==1 -> i++;
:: i ==N -> goto final
od

:: lenPR==0 && terminationCount==N - failureCount -> goto final
fi

:: terminationCount == N - failurCount -> goto final
od

Fig. 4. The PROMELA code of master after initialisation in ITP-ZooKeeper

S?startWork;
do
:: (pendWork[_pid] > 0) -> pendWork[_pid]-- // there is work
:: (pendWork[_pid] == 0) -> // there is no work

if
:: T[_pid]?terminate -> goto final;
:: Q!requestDonor,_pid
fi
do
:: W[_pid]?requestWork,workreply,stealer -> workreply!refusal
:: T[_pid]?terminate -> goto final;
:: G[_pid]?getDonor ->

if
:: T[_pid]?terminate -> goto final;
:: W[donorOf[_pid]]!requestWork,workchannel,_pid;

if
:: failure[donorOf[_pid]] -> skip; // donor not responding
:: workchannel?response; //treats both case: refusal, donation

if
:: T[_pid]?terminate -> goto final;
:: U!updateMaster,_pid; lastUpdate[_pid]=pendWork[_pid];
fi

fi
:: failure[donorOf[_pid]] -> U!updateMaster,_pid;
fi
break

od
:: W[_pid]?requestWork,workreply,stealer ->

if
:: pendWork[_pid]==0 -> workreply!refusal;

lastUpdate[_pid]=0;
if
:: T[_pid]?terminate -> goto final;
:: U!updateMaster,_pid;
fi

:: pendWork[_pid]==1 -> workreply!refusal;
pendWork[_pid] = 0; lastUpdate[_pid]=0;
if
:: T[_pid]?terminate -> goto final;
:: U!updateMaster,_pid;
fi

:: pendWork[_pid]>1 -> add= pendWork[_pid]/2;
pendWork[_pid]=add; pendWork[stealer]=add;
stealerRoleCount[stealer]++; donorRoleCount[_pid]++; //for verification only
workreply!getWork; lastUpdate[_pid]=pendWork[_pid];
if
:: T[_pid]?terminate -> goto final;
:: U!updateMaster,_pid
fi

:: FF[_pid]!failed -> goto dead;
fi;

:: FF[currentWatch[_pid]]?failed ->
failer = currentWatch[_pid]; NF!_pid,failer;
GW[_pid]?newWatch; currentWatch[_pid] = newWatch;

od

Fig. 5. The PROMELA code of worker in ITP-ZooKeeper .

do
:: NF?reporter,failer -> estimate[failer]=0;

detWatch(failer); // provides failerWatch
removeFromWR(failer); removeFromPU(failer); removeFromPR(failer);
terminationNotified[failer]=1; failureCount++; failure[failer] = 1;
currentWatch[reporter]=failerWatch; GW[reporter]!failerWatch;

:: terminating -> break;
od

Fig. 6. The PROMELA code of ZKeeper in ITP-ZooKeeper .

