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PREAMBLE 

Smart materials that respond to electromechanical coupling have become essential components 

of modern engineering structures as well as advanced micro/nano electromechanical systems. 

The most popular class of materials for this purpose is piezoelectric materials. However, 

piezoelectricity only exists in a certain type of materials (non-centrosymmetric), which are 

often brittle in nature and toxic due to their lead content. A new phenomenon, known as 

-like 

response in virtually all the dielectric materials. Flexoelectric effect increases with the 

decreasing size, and thus, the flexoelectric output at micro and nano scales becomes very high.  

Flexoelectricity requires a non-uniform strain/electric field in a dielectric material to exhibit an 

electromechanical response. This requirement is generally met by having non-uniform or 

varying geometry of the structures. Through this work, we propose the use of Functionally 

Graded Material (FGM) to have a gradient of electrical and mechanical field variables. The 

graded composition is found to have an enriching effect on the flexoelectricity, both 

qualitatively and quantitatively. Qualitatively, the graded composition provides the geometry 

independent electromechanical response and provides the freedom of choosing any shape. On 

the other hand, for the quantitative aspect, the magnitude of flexoelectric response in FGM 

composition is found to be many folds higher than that achieved through non-uniform 

geometry. The direct effect (sensing) and the converse effect (actuation), both are examined 

under mechanical and thermal loads in an FGM structure of regular shape. Further, a novel 

strategy is developed to trigger a universal converse flexoelectric response in homogeneous 

structures, through varying electric field direction inside the structure. Three different 

configurations with different electrical boundary conditions are proposed for this purpose. It is 

found that these configurations can be utilized to achieve actuation in two perpendicular 
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directions. Later, these configurations are compared with the other two methods to generate 

converse flexoelectricity, i.e., trapezoid shape and FGM. Different combinations of these three 

methods were also examined and compared. While the FGM was found to outperform the other 

individual configurations, the varying electric field direction strategy was successful in 

developing the converse flexoelectricity independent of geometry and material composition.  

Based on the large magnitude of flexoelectric response in FGM, the possibility of harnessing 

flexoelectric coupling for novel applications was realized. In this sequence, two novel 

applications of this unique universal phenomenon, namely, flexocaloric effect and polarization 

switching, are investigated in FGMs. In polarization switching study, poling of ferroelectric 

materials achieved through purely mechanical means by virtue of flexoelectric polarization 

induced due to mechanical loading is studied. The result of such poling is the coexistence of 

both flexoelectric and piezoelectric phenomena in the same sample. Later, the effective 

electromechanical coupling due to the interplay of these two coexisting phenomena is analyzed. 

It was found that while the two couplings act destructively in direct effect, the converse effect 

can be enhanced by up to 90% of pure flexoelectric coupling. On the other hand, in flexocaloric 

effect, the entropy change, due to flexoelectricity generated electric field, triggers a temperature 

change in the material. This can be used for solid-state cooling in a cyclic manner. Finally, a 

basic research gap in the field of flexoelectricity, i.e., defining the parameters for the 

quantification of energy conversion in flexoelectricity, is addressed. Towards a better 

understanding of this phenomenon, we have defined performance indexes to quantify the 

energy conversion efficiency of flexoelectricity in different modes of operations and 

investigated its interplay with piezoelectricity. The values of these indexes were examined in 

three different materials, namely, barium titanate (BaTiO3), Er-doped BST ceramic (Ba1-

xTi0.96Sn0.04O3 + x mol. % Er), and polyvinylidene difluoride (PVDF). 
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