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ABSTRACT

KEYWORDS: Mathematical methods, non-equilibrium statistical physics, quan-
tum scattering, time-domain methods, coupled-partial differen-
tial equations (PDEs), multi-state problems, molecular processes,
non-adiabatic transitions, reaction-diffusion systems, condensed-
phase chemical dynamics, stochastic processes, Schrodinger equa-
tion, Smoluchowski equation, Brownian motion, spectroscopic and

collision processes, complex systems.

Multi-state systems that undergo non-adiabatic transitions between various states can
mimic several complex processes in nature. The notion is an interdisciplinary concept
and is useful across various disciplines of science. The theory of complex systems often
can be derived using statistical physics or quantum physics. In particular, multi-state
models are used as a fundamental tool for understanding molecular processes happening

in gaseous, liquid phases, and sometimes in solid phases as well.

Molecular processes, in general, can be understood as crossing between different en-
ergy states of the molecule which are achieved through a change in configurations such
as bond length, bond angle, polarization, etc. of the molecule. If the molecule is in
the gaseous phase, a complete Hamiltonian description that accounts for each electron,
ions for the many-body molecular processes gives rise to a set of Born-Oppenheimer
states that are coupled. Examples such as spectroscopic transitions, chemical reactions,
etc. can be understood as the wave-packet transfer between these Born-Oppenheimer
surfaces. Taken that the process is effectively one-dimensional (along the steepest de-
scent change of energy), the relevant configuration that changes during the process is
taken to be x, hence simplifying the models. Now, the process can be studied using
one-dimensional coupled-Schrédinger equations which incorporates the shape of the
energy states U;(z) and the couplings V;;(x) that induce the i — j state transitions in
the molecule. Once the time-dependent wave functions ¥, (z, t) are derived, the popula-

tion profiles of each state and other spectral profiles can be calculated. Regarding such
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models, the exact non-adiabatic wave functions W;(x,¢)’s are unavailable even for sim-
ple two-state models. So far, the mathematical methods were developed to obtain the
approximate/asymptotic solutions in order to further calculate related entities such as
transition probability, etc. The importance of the problems was realized following the
influential work done by Landau, Zener, and Stueckelberg. The contextual importance
and the lack of mathematical methods were immediately realized leading to updations
given by Rosen, Demkov, et al., Osherov, et al., H. Nakamura et al., and M. S. Child,
etc. The updations included introducing new models or improving the available ap-
proximate expressions of transition probability or other analytical entities. The models
related to delta-function coupling between the states were considered by Chakraborty
et al. and their analytical attempts involve Laplace/Fourier transformations. They were
able to provide up to the Laplace/energy-domain solutions of the wave packet dynamics,
and beyond which the solutions were not invertible to time-domain. As there have been
no full-time-domain solutions available so far for J-coupled models, there becomes an
importance to solve them in time-domain in order to study gas-phase processes dynam-

ically.

Whereas when the molecule is immersed in a solution, the molecular motion will be
highly coupled to the solvent forces. A complete description that includes all the sol-
vent interactions is impossible, yet an approach that assumes a random (Brownian) mo-
tion of molecular configurations can be undertaken. The process can be characterized
as a transition between different Born-Oppenheimer surfaces as similar to gas-phase
description. Hence the probability distribution over molecular configuration over time
i.e., P(z,t) is governed by coupled-Smoluchowski equations in 1D. The advantage of
using the Smoluchowski equation is that system parameters such as temperature, the
viscosity of the solvent bath, excitation parameters, and molecular parameters such as
potential, molecular configurations are inbuilt in the model. The solution profiles can be
useful in studying chemical kinetics, for understanding and predicting reaction data as a
function of parameters, which is otherwise a tedious job to obtain the multi-parametric
fitting function. Such reaction-diffusion models have only Laplace domain solutions
and do not have a time-domain solution unless the problem involves translational or
mirror symmetry. The Laplace domain solutions can give only first-order rate constants

at different time regimes. On the other hand, a time-domain work would give exact con-
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centration profiles without assuming the order of the reaction. In this thesis, we develop
mathematical methods to solve various Smoluchowski models in the time domain. In
the end, we present exact time-dependent concentration profiles as a function of the

system and molecular parameters for reactions in condensed phases.

The main objective of this research work is to develop mathematical methods to solve
some insightful models of statistical mechanics and quantum mechanics analytically.
The resulting time-domain solutions would improve the understanding over molecular
processes that happens inside the gaseous/condensed phase. Also using the experience
from the analytical approaches, we are able to propose future prospects of introducing
efficient algorithms to solve for generalized models of both statistical mechanics and
quantum mechanics. The thesis is organized as follows: Chapter I gives a detailed intro-
duction to the arisal of multi-state problems in nature and poses some of the useful mod-
els. In chapter II, we give our time-domain method to solve various reaction-diffusion
models given by the Smoluchowski equation. The appropriate analytical and numeri-
cal verifications are presented in the respective sections. In chapter III, we apply the
methods to solve scattering and multi-state problems in quantum physics (Schrédinger
operators). Chapter IV concludes the thesis by stating possible considerations over the

present work and the scope of the work in the future.
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