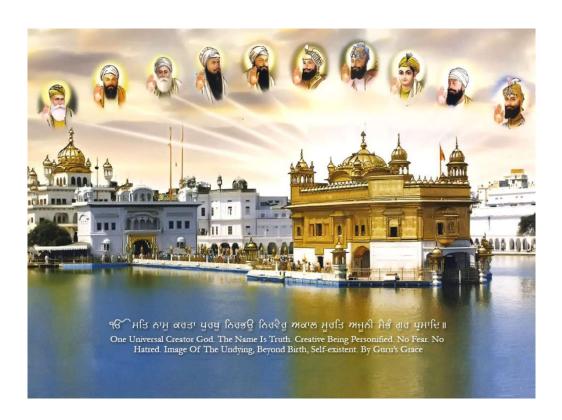
Perovskite Oxide Based Photocatalysts for Energy and Environment Oriented Applications

A thesis submitted by

Ashish Kumar (D16016)

for the award of the degree of

Doctor of Philosophy



School of Basic Sciences
Indian Institute of Technology Mandi
Sep. 2021

Dedicated to Almighty God

and

My Beloved Parents

INDIAN INSTITUTE OF TECHNOLOGY MANDI MANDI- 175 075 (H.P.), INDIA

www.iitmandi.ac.in

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this thesis is the result of

investigations carried out by me in the School of Basic Sciences, Indian Institute of

Technology Mandi, under the supervision of Dr. Venkata Krishnan, and it has not been

submitted elsewhere for any degree or diploma. In keeping with the general practice,

due acknowledgements have been made wherever the work described is based on

finding of other investigators.

Place: Mandi, Himachal Pradesh, INDIA

Date: Sep. 03, 2021

Name: Ashish Kumar

Declaration by the Research Advisor

I hereby certify that the entire work in this thesis has been carried out by Mr. Ashish

Kumar (D16016), under my supervision in the School of Basic Sciences, Indian Institute

of Technology Mandi, and no part of it has been submitted elsewhere for any Degree or

Diploma.

Place: Mandi, Himachal Pradesh, INDIA

Date: Sep. 03, 2021

Signature: V. Knishno

Name: Dr. Venkata Krishnan

Acknowledgments

The entire Ph.D. journey has been the learning, implementing and experiencing phase of my life. While pursuing my Ph.D. degree, many seen and unseen hands pushed me forward, put me on the right path and enlightened me with their knowledge and experience. This page is the heartfelt acknowledgment to appreciate all those people who helped me in one or the other way in this entire duration of my Ph.D. I enjoyed this phase of life as a researcher.

At this moment of accomplishment, I would like to express a deep sense of gratitude to my Ph.D. advisor, **Dr. Venkata Krishnan** for his guidance, valuable suggestions, friendly behavior and persistent enthusiasm, which facilitated me to complete this task of scientific research leading to a Ph.D. degree. I sincerely thank him for providing me the opportunity to work in his research group (VKN group) and to explore material chemistry under his vast knowledge and expertise. I am very grateful to him for encouraging me to attend several conferences in India and abroad and for providing an opportunity to work at another research lab outside the institute. I appreciate his efforts to motivate all group members to present our research activities at numerous conferences, workshops, seminars, etc. I am highly grateful to him for standing by my side in times of difficulties, solving the problems and encouraging me to progress unceasingly. I highly appreciate his interest in research and his motivation to publish the research works always with high aim. The freedom to pursue research and collaborate within and outside IIT Mandi distinguishes the VKN group from others and this kept me motivated for exploring new topics throughout this journey.

In addition, I render my profound thank to Director, IIT Mandi for his support and encouragement to all research scholars. I would like to thank all my doctoral committee members, **Dr. Aditi Halder**, **Dr. Rik Rani Koner**, **Dr. Prem Felix Siril** and **Dr. Syed Abbas** for their periodic guidance and helpful suggestions during my Ph.D. tenure. I have been greatly benefitted from their suggestions regarding the plan of studies and the research work.

The research facility at Advanced Materials Research Center (AMRC), IIT Mandi is gratefully acknowledged. My wholehearted thanks to all former and current AMRC staff for their assistance in the lab and without them, it would not be possible to complete the tasks on time. Furthermore, I am thankful to all the library staff of IIT Mandi for their cordial behavior and help whenever required during my stay here.

I would also like to thank all my collaborators listed below for their support, suggestions and discussions. Their collaboration has built a solid foundation to accomplish this journey.

- (1) **Prof. M. V. Shankar**, Yogi Vemana University, Kadapa, Andhra Pradesh, for providing me the opportunity to work in his lab and perform photocatalytic hydrogen evolution experiments.
- (2) Dr. Saswata Bhattacharya, IIT Delhi, Delhi, for carrying out theoretical studies.
- (3) **Dr. Aditi Halder**, IIT Mandi, for helping in photoelectrochemical measurements.
- (4) **Dr. Suman Kalyan Pal**, IIT Mandi, for helping in fluorescence lifetime measurements.

My hearty thanks to **Dr. Suneel Kumar** for his guidance and help at every step of my initial period at IIT Mandi. I will forever be thankful for the support and care he had vested in me throughout my research work. I also thank **Dr. Vipul Sharma**, **Dr. Ashish Bahuguna**, and **Dr. Lingeshwar Reddy**, for their support and help during this journey. I will never forget all the interesting scientific and non-scientific discussions we had together. I am also very thankful to other group members: **Ajay**, **Hushan**, **Tripti**, **Manisha**, **Harpreet**, **Nisha** and **Priyanka**. I am also grateful to former M.Sc. students of our group, **Mahender**, **Akhil**, **Saniya** and **Yash** for their company.

I would like to acknowledge the memorable and invaluable company of my colleagues, **Dr. Ashwani Sharma**, **Yogesh Aher**, **Krishan Kumar**, **Vishal Sharma** and **Ravinder Kaushik**, which kept me motivated and helped me to progress persistently. I would also like to thank my M.Phil. advisor, **Prof. Mrs. Suvarcha Chauhan**, Himachal Pradesh University, for her support and blessings. I sincerely thank my university seniors **Dr. Maninder Kaur and Sanjay Atri** for their help on various occasions in this entire journey. There are countless persons whom I want to acknowledge, but writing all the names here would not be possible. Hence I would like to thanks all my other friends for their continuous support and encouragement.

I express my warm gratitude to my wife, Kalpna, sisters (Soniya, Anita, Sapna and Deepika) and brothers-in-law (Anurag Mohila, Dr. Amrender Singh, Sanjay Kumar and Sahil Chaudhary) for their continuous inspiration and motivation. I would like to convey my profound affection to my nieces Aradhya and Yashika and nephews Tanishak, Akshaj and Arnav; their cute smiles always kept me happy and cheerful.

I express a genuine sense of obeisance to my parents (**Sh. Bhagi Rath and Smt. Simro Devi**) for their unwavering support, cooperation and patience towards me in this long journey. I can never forget the cooperation, endless tolerance and constant encouragement from all my family members during the challenging and happy moments of this journey. In addition, I would like to express my due acknowledgment to my college chemistry teacher **Dr. Mohinder Guleria** (Govt. Degree College, Sarkaghat, HP), who has been a motivation for me to pursue a career in chemistry.

Last but not least, I would like to express my wholehearted gratitude to ISRO-SCL, India for junior research fellowship (JRF) and CSIR, India for senior research fellowship (SRF) for financial support during my Ph.D. tenure.

Above all, I am highly grateful to the **Almighty God** for His abundant blessings, which always lead me in the right direction.

Abbreviations

PXRD	Powder X-ray diffraction
FTIR	Fourier-transform infrared spectroscopy
FESEM	Field emission scanning electron microscopy
HRMS	High resolution mass spectrometry
HRTEM	High resolution transmission electron microscopy
EDAX	Energy-dispersive X-ray analysis
TGA	Thermogravimetric analysis
DRS	Diffuse reflectance spectroscopy
BET	Brunauer-Emmett-Teller
PTFE	Polytetrafluoroethylene
XPS	X-ray photoelectron spectroscopy
UPS	Ultraviolet photoelectron spectroscopy
REELS	Reflected electron energy loss spectroscopy
EPR	Electron paramagnetic resonance spectroscopy
GC	Gas chromatography
HRMS	High-resolution mass spectroscopy
ITO	Indium doped tin-oxide
UV	Ultraviolet
MB	Methylene blue
RhB	Rhodamine B
MV	Methyl violet
BPA	Bisphenol A
TBZ	Thiabendazole
BBR	Brilliant blue R
CFX	Ciprofloxacin
TEOA	Triethanolamine
BQ	Benzoquinone
GO	Graphene oxide
RGO	Reduced graphene oxide

Table of Contents

Chapter 1. Introduction	
Abstract	2
1.1. Introduction	3
1.2. Structure and formability of perovskite oxides	5
1.3. Fundamentals of different photocatalytic processes	7
1.3.1. Photocatalytic pollutant degradation	8
1.3.2. Photocatalytic water splitting and hydrogen evolution	10
1.3.3. Photocatalytic nitrogen fixation	12
1.4. Design and development of perovskite oxide based materials	
1.4.1. Band gap engineering	17
1.4.2. Suppression of electron-hole pair recombination	19
1.4.3. Defect engineering	20
1.5. Titanate based photocatalysts for energy and environmental applications	23
1.6. Aims and objectives	38
1.7. References	39
Chapter 2. Materials and Methods	53
Abstract	54
2.1. Materials	55
2.2. Synthesis procedures	55
2.2.1. Synthesis of CaTiO₃ (CT) mesocrystals	55
2.2.2. Synthesis of graphene oxide (GO) nanosheets	56
2.2.3. Synthesis of MoS ₂ -RGO (MG) nanosheets	56
2.2.4. Synthesis of CaTiO ₃ -MoS ₂ -RGO (CTMG) nanocomposites	56
2.2.5. Synthesis of g-C ₃ N ₄ (GCN) nanosheets	57
2.2.6. Synthesis of Rh-SrTiO₃ (RST) nanoparticles	57
2.2.7. Synthesis of GCN-RGO-RST (CNGRS) aerogels	57
2.2.8. Synthesis of CaTiO ₃ (CT) and N-CaTiO ₃ (NCT)	58
2.2.9. Synthesis of N-CaTiO₃-RGO (NCTG) composites	58
	59
2.2.10. Synthesis of CaTiO₃ (CT) nanoflakes	55

	2.2.12. Synthesis of 3D leaf inspired CaTiO ₃ photocatalyst (CT)	59
	2.2.13. Synthesis of 3D leaf inspired defected CaTiO₃ photocatalysts (DCT)	60
	2.2.14. Synthesis of SrTiO ₃ (ST) and defect engineered SrTiO ₃ (DST)	60
	2.2.15. Computational studies	61
2.3. lı	nstrumentation	62
	2.3.1. X-ray diffraction (XRD)	62
	2.3.2. Raman spectroscopy	62
	2.3.3. Fourier-transform infrared spectroscopy (FTIR)	62
	2.3.4. Thermogravimetric analysis (TGA)	63
	2.3.5. Field emission scanning electron microscopy (FESEM)	63
	2.3.6. Transmission electron microscopy (TEM)	63
	2.3.7. X-ray photoelectron spectroscopy (XPS)	63
	2.3.8. UV-vis-NIR diffuse reflectance spectroscopy (DRS)	64
	2.3.9. UV-vis spectroscopy	64
	2.3.10. Brunauer-Emmett-Teller (BET) surface area and pore volume analyzer	64
	2.3.11. Photoluminescence spectroscopy (PL)	64
	2.3.12. High resolution mass spectrometry (HRMS)	65
	2.3.13. Photoreactors	65
	2.3.14. Gas chromatography (GC)	65
	2.3.15. Fluorescence Lifetime spectroscopy	65
	2.3.16. Photoelectrochemical measurements	65
2.4. P	Photocatalysis experiments	66
	2.4.1. Photocatalytic hydrogen evolution	66
	2.4.2. Photocatalytic pollutant degradation and adsorption studies	67
	2.4.3. Photocatalytic nitrogen fixation	68
2.5. R	References	69
Chap	ter 3. Ternary Photocatalysts for Energy and Environmental Applications	7 3
Abstr	ract	74
3.1 N	anocomposites of CaTiO₃-MoS₂-RGO	75
	3.1.1. Preparation and characterization of photocatalysts	76
	3.1.2. Photocatalytic hydrogen evolution and pollutants degradation studies	85

3.2. Ternary aerogels of g-C ₃ N ₄ -RGO-Rh-SrTiO ₃	100
3.2.1. Preparation and characterization of photocatalysts	100
3.2.2. Photocatalytic hydrogen evolution studies	109
3.3. References	118
Chapter 4. Binary Photocatalysts for Environmental Applications	126
Abstract	127
4.1. Nanocomposites of N-doped CaTiO₃-RGO	128
4.1.1. Preparation and characterization of photocatalysts	128
4.1.2. Photocatalytic pollutant degradation studies	135
4.2. Nanocomposites of CaTiO₃-g-C₃N₄	146
4.2.1. Preparation and characterization of photocatalysts	147
4.2.2. Photocatalytic pollutant degradation studies	153
4.3. References	164
Chapter 5. Unary Photocatalysts for Energy Applications	169
Abstract	170
5.1. Oxygen vacancy engineered CaTiO₃	171
5.1.1. Preparation and characterization of photocatalysts	172
5.1.2. Photocatalytic hydrogen evolution and nitrogen fixation studies	181
5.2. Defect engineered SrTiO₃	192
5.2.1. Preparation and characterization of photocatalysts	193
5.2.2. Photocatalytic nitrogen fixation studies	199
5.3. References	203
Chapter 6. Summary and Future Perspectives	209
Abstract	210
6.1. Summary	211
6.2. Future perspectives	216
6.3. References	220
List of Publications	222