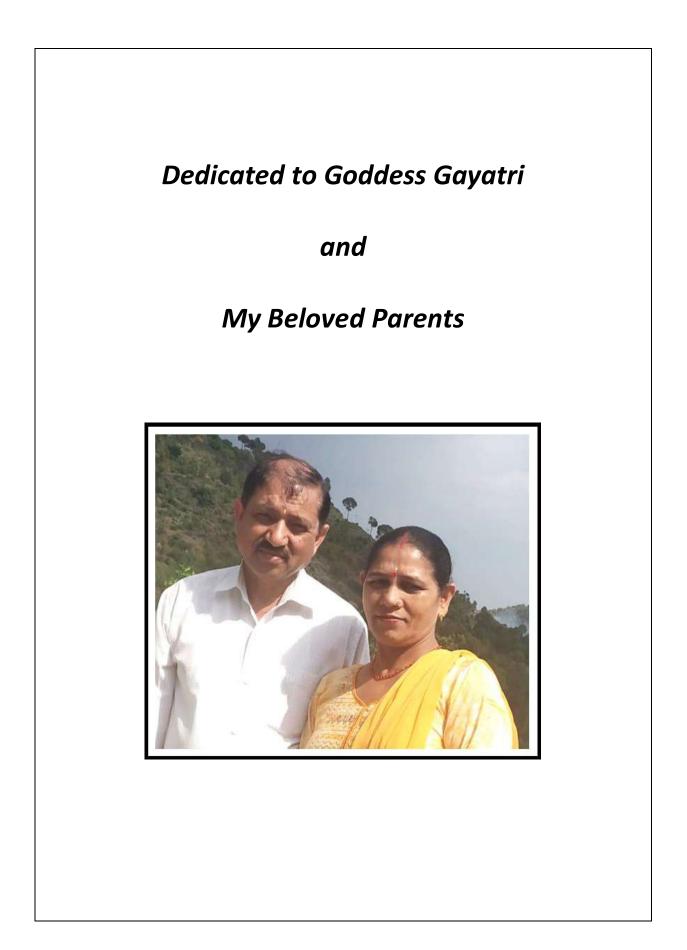
Rational Design and Development of Plasmonic Photocatalysts for Environmental Remediation and Organic Transformation Reactions

A thesis submitted by

Ajay Kumar (D16017)

for the award of the degree of


Doctor of Philosophy

School of Basic Sciences

Indian Institute of Technology Mandi

Sep. 2021

www.iitmandi.ac.in

Declaration by the Research Scholar

I hereby declare that the entire work embodied in this thesis is the result of investigations carried out by me in the **School of Basic Sciences**, Indian Institute of Technology Mandi, under the supervision of **Dr. Venkata Krishnan**, and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on finding of other investigators.

Place: Mandi, Himachal Pradesh, INDIA Date: Sep. 11, 2021

Signature:

Name: Ajay Kumar

Declaration by the Research Advisor

I hereby certify that the entire work in this thesis has been carried out by **Mr. Ajay Kumar**, under my supervision in the **School of Basic Sciences**, Indian Institute of Technology Mandi, and that no part of it has been submitted elsewhere for any Degree or Diploma.

Place: Mandi, Himachal Pradesh, INDIA Date: Sep. 11, 2021

V. Knishna Signature:

Name: Dr. Venkata Krishnan

Acknowledgements

The entire Ph.D. journey has been learning, implementing, experiencing phase of my life. While pursuing my Ph.D. degree, many seen and unseen hands pushed me forward and put me on the right path and enlightened me with their knowledge and experience. This page is the heartfelt acknowledgement to appreciate all those people who helped in one or the other way in this entire duration of Ph.D. I really enjoyed this phase of life as a researcher.

First and foremost, I would like to express my deep sense of gratitude and respect to my supervisor, **Dr. Venkata Krishnan** for his invaluable guidance, support, friendly behavior and persistent enthusiasm during my which facilitated me to accomplish this task of scientific research leading to a Ph.D. degree. I thank him very much for providing me the freedom to explore the possibilities in the area of material chemistry and sharing his wide knowledge and expertise. I very much appreciate his efforts to motivate all group members to present our research activities at numerous conferences, seminars etc. I am highly grateful to him for standing by my side in times of difficulties, solving the problems and encouraging me to progress ahead.

In addition, I render my profound thank to Director, IIT Mandi for his support and encouragement to all research scholars. I wish to place my sincere gratitude to my doctoral committee members, **Dr. Amit Prasad, Dr. Shubhajit Roy Chowdhury, Dr. Subrata Ghosh** and **Dr. Prem Felix Siril** and for their frequent support and helpful inputs. I have been greatly benefitted by their suggestions regarding the plan of studies and the research work.

The research facility at Advanced Materials Research Center (AMRC), IIT Mandi is gratefully acknowledged. My wholehearted thanks to all former and current AMRC staffs for their assistance in lab and without them it would not be possible to complete the tasks on time. Furthermore, I am thankful to all the library staff of IIT Mandi for their cordial behavior and help whenever required during my stay here.

I would also like to express my sincere thanks to all my collaborators (**Prof. Pedro H. C. Camargo, Dr. Nagaraja C. Mallaiah and Dr. Pardeep Singh** for their support, suggestions and discussions.

My hearty thanks to Dr. Vipul Sharma (VS), Dr. Kumbam Lingeshwar Reddy (KLR), Dr. Ashish Bahuguna (AB) and Dr. Suneel Kumar (SK) for their guidance and help at each and every step of my initial period at IIT Mandi. I will forever be thankful for the support and care they had vested on me throughout the period of my research work. I specially thank to my group members Ashish (AKB), Priyanka (PC), Hushan (HC), Manisha (MS), Tripti (TC) and Harpreet (HK) for their research related help and friendly behavior during this entire journey. I will always remember all interesting scientific and non-scientific discussions we had together. I am also thankful to M.Sc. students of our group, Kamlesh, Abhishek, Satish, Palak and Sameer for their support. There are countless number of persons whom I want to acknowledge, but writing all the names here would not be possible, hence I would like to thanks all other IIT Mandi friends for their continuous support and encouragement.

I would like to acknowledge the memorable and invaluable company of my friends; Arjun Barwal, Rohit Rana, Kuldeep Kumar, Arjun Sharma and Rajesh Sharma for their continuous motivation and emotional support which made me to progress persistently.

I would like to deeply express my warm words of gratitude to my ever-loving parents, **Sh. Sher Singh** and **Smt. Sarojini**, my wife **Karuna Thakur**, my sister **Vartika Rana** and brother-in-law **Tek Singh Rana** for their continuous inspiration, motivation and cooperation. I would also like to convey my profound affection to my nephew and niece, **Shaurya Rana** and **Aayushi Rana** whose cute smile always makes me happy and cheerful. In addition, I would like to express my due acknowledgement to my first chemistry teacher **Sh. Rajender Thakur** (Govt. Boys Sr. Sec. School, Solan, HP) who has been a motivation for me to pursue a career in chemistry.

Last but not least, I would like to express my whole hearted gratitude for **Ministry of Education (MoE)**, India for awarding the junior research fellowship (JRF) and senior research fellowship (SRF) to successfully complete my Ph.D.

I am highly grateful to the **Goddess Gayatri**, for her abundant blessings, which lead me in right direction always. My hearty thanks to one and all.

Abbreviations

BET	Brunauer-Emmett-Teller
BQ	Benzoquinone
CFX	Ciprofloxacin
DRS	Diffuse reflectance spectroscopy
EDAX	Energy-dispersive X-ray analysis
FESEM	Field emission scanning electron microscopy
FTIR	Fourier-transform infrared spectroscopy
GCN	Graphitic Carbon Nitride
GO	Graphene oxide
HRMS	High resolution mass spectrometry
HRTEM	High resolution transmission electron microscopy
ITO	Indium doped tin-oxide
MB	Methylene blue
NIR	Near Infrared
NMR	Nuclear Magnetic Resonance
NP	Nanoparticles
NR	Nanorods
NS	Nanosheets
NST	Nanostars
PEC	Photoelectrochemical cell
PTFE	Polytetrafluoroethylene
RGO	Reduced graphene oxide
тс	Tetracycline
TEA	Triethanolamine
TGA	Thermogravimetric analysis
ТОС	Total organic carbon
UCNP	Upconversion Nanoparticles
UV	Ultraviolet
XRD	X-ray diffraction
XPS	X-ray photoelectron spectroscopy

Table of Contents

Chapter 1. Introduction	1
Abstract	2
1.1. Introduction	3
1.1.1. Basic principles of photocatalysis	3
1.1.2. Marrying plasmonic NP and semiconducting photocatalysts	6
1.1.3. Fundamental concepts	6
1.2. TiO ₂ -based Materials for Plasmonic Photocatalysis	10
1.2.1. Synthesis of TiO ₂ -based plasmonic photocatalysts	11
1.2.2. Photocatalytic environmental remediation	12
1.2.3. Photocatalytic organic transformations	18
1.3. GCN-based Materials for Plasmonic Photocatalysis	21
1.3.1. Synthesis strategies for plasmon mediated GCN	22
1.3.2. Plasmon mediated GCN for environmental remediation	23
1.3.3. Plasmon mediated GCN for organic reactions	24
1.4. Upconversion Nanomaterials for Plasmonic Photocatalysis	27
1.4.1. Basic concepts of upconversion in lanthanides	28
1.4.2. Infrared light active photocatalysts	29
1.4.3. Plasmon-mediated upconversion materials for photocatalytic applications	30
1.4.4. Photocatalytic organic transformation reactions	33
1.5. Aims	34
1.6. Objectives	35
1.7. References	
Chapter 2. Materials and Methods	49
Abstract	50
2.1. Materials	51
2.2. Synthesis Procedures	51
2.2.1. Synthesis of Au nanospheres (Au NS)	51
2.2.2. Synthesis of cylindrical Au nanorods (Au NR)	52
2.2.3. Synthesis of Au hexagons (Au NHX)	52

	2.2.4. Synthesis of Au nanostars (Au NST)	53
	2.2.5. Synthesis of amorphous titania embedded with Au nanoparticles	53
	2.2.6. Synthesis of graphitic carbon nitride (GCN) and protonated GCN	53
	2.2.7. Synthesis of Au decorated GCN (AGCN)	54
	2.2.8. Synthesis of graphene oxide (GO)	54
	2.2.9. Synthesis of Au NST-GCN-RGO (ACG) nanocomposites	54
	2.2.10. Synthesis of Au NST-GCN-RGO (ACG) nanocomposites	55
	2.2.11. Synthesis of NaYF4:Yb/Er UCNP	55
	2.2.12. Synthesis of UCNP@CdS and UCNP@CdS-Au nanocomposites	56
	2.2.13. Synthesis of UCNP@CdS-Au-RGO (UCAG) quaternary nanocomposites	56
	2.2.14. Synthesis of NaY _{0.5} Gd _{0.5} F ₄ :Yb/Tm core UCNP	56
	2.2.15. Synthesis of NaY _{0.5} Gd _{0.5} F ₄ :Yb/Tm@NaYb _{0.5} Gd _{0.5} F ₄ core@shell UCNP	57
	2.2.16. Synthesis of zinc oxide (ZnO) and nitrogen doped ZnO (N-ZnO) nanoshee	t 57
	2.2.17. Synthesis of Au NP-N-ZnO-UCP (AZU) nanocomposites	57
2.3.	Instrumentation	58
	2.3.1. X-ray diffraction (XRD)	58
	2.3.2. Raman spectroscopy	58
	2.3.3. Fourier-transform infrared spectroscopy (FTIR)	58
	2.3.4. Zeta potential measurements	58
	2.3.5. Thermogravimetric analysis (TGA)	58
	2.3.6. Field emission scanning electron microscopy (FESEM)	59
	2.3.7. Transmission electron microscopy (TEM)	59
	2.3.8. X-ray photoelectron spectroscopy (XPS)	59
	2.3.9. Brunauer-Emmett-Teller (BET) surface area and pore volume analyzer	59
	2.3.10. UV-vis spectroscopy	60
	2.3.11. UV-vis-NIR diffuse reflectance spectroscopy (DRS)	60
	2.3.12. Photoluminescence spectroscopy (PL)	60
	2.2.13. Upconversion luminescence (UCL)	60
	2.2.14. Total organic carbon (TOC)	60
	2.2.15. ICP-MS measurements	60
	2.2.16. Circular dichroism (CD) measurements	61
	2.2.17. High resolution mass spectrometry (HRMS)	61

v

2.2.18. Nuclear magnetic resonance (NMR)	61
2.3.19. Photoreactors	61
2.3.20. Photoelectrochemical measurements	61
2.4. Photocatalysis Experiments	62
2.4.1. Photocatalytic methanol oxidation	62
2.4.2. Photocatalytic pollutant degradation	62
2.4.3. Photocatalytic organic synthesis	63
2.5. Compounds Characterization	64
2.6. References	66
Chapter 3. Plasmon Mediated Titania based Photocatalysts	70
Abstract	71
3.1. Au-TiO _x : Influence of Different Light Sources on Photocatalytic Activity	72
3.1.1. Preparation and characterization of photocatalysts	72
3.1.2. Photocatalytic activity studies	76
3.2. Au-TiO _x : Influence of Morphology on Photocatalytic Activity	81
3.2.1. Preparation and characterization of photocatalysts	81
3.2.2. Photocatalytic activity studies	87
3.3. Au-TiO ₂ : Influence of Phase Transformation on Photocatalytic Activity	90
3.3.1. Preparation and characterization of photocatalysts	90
3.3.2. Photocatalytic activity studies	98
3.4. References	105
Chapter 4 Plasmon Mediated Graphitic Carbon Nitride based Photocatalysts	109
Abstract	110
4.1. Au-GCN-RGO Nanocomposites for Pollutants Degradation and Organic Synthesis	111

4.1.2. Photocatalytic activity studies	121
4.2. Au-GCN-Ti ₃ C ₂ MXene Nanocomposites for Cefixime Degradation	138
4.2.1. Preparation and characterization of photocatalysts	138
4.2.2. Photocatalytic activity studies	145
4.3. Au-GCN-Proteins for Controlling the Kinetics of Photocatalysis	149

4.3. Au-GCN-Proteins for Controlling the Kinetics of Photocatalysis

4.1.1. Preparation and characterization of photocatalysts

4.3.1. Preparation and characterization of photocatalysts	149
4.3.2. Photocatalytic activity studies	157
4.4. References	164

Chapter 5. Plasmon Mediated Upconversion Nanomaterial based Photocatalysts	
Abstract	176
5.1. Upconversion Nanomaterials based Quaternary Photocatalysts	
5.1.1. Preparation and characterization of photocatalysts	177
5.1.2. Photocatalytic activity studies	189
5.2. Upconversion Nanomaterials based Ternary Photocatalysts	202
5.2.1. Preparation and characterization of photocatalysts	202
5.2.2. Photocatalytic activity studies	209
5.3. References	216
Chapter 6. Summary and Future Perspectives	222
Abstract	223
6.1. Summary	226
6.2. Future Perspectives	228
List of Publications	231

An	ne	xu	re	
~!!		ли		

vii

236