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ABSTRACT

Even today, 80% of the world’s energy needs are dependent on fossil fuel which in-
variably has an impact on the environment. Hydrogen in the hydrocarbon combustion
increases NOx and soot formation Pashchenko [2017], nevertheless, it also provides
higher temperature in the combustion phenomenon. Furthermore, hydrogen combus-
tion can mitigate some of the environmental problems and also have the potential to
fulfill major energy needs. The radiative heat transfer contributes as losses in combus-
tion phenomenon, thus, important for accurately determining the temperature, NOx,
soot, other species and efficiency of the system. The primitive approach for radiation
modeling is the assumption of a gray participating medium that considers the radiation
parameters independent of the spectrum, which is a highly unrealistic approach. The
high fidelity hydrogen combustion model requires accurate modeling of radiation. A
novel non-gray radiation model which is based on the Full Spectrum £— distribution
(FSK) method, named the nonGrayAbsorptionEmission model has been developed in
the OpenFOAM framework - an open-source software. The new nonGrayAbsorptionE-
mission model assigns a set of absorption coefficients depending on the thermodynamic
state of gases in the combustion system from the in-house database. This model fur-
ther avails the flexibility of choosing different sets of absorption coefficients for a given
thermodynamic state to trade-off between the accuracy and computational resource re-

quirements.

Various test cases are developed to validate the different stages of development. The
Planck mean model is a very simplistic approach towards modeling spectrally varying
absorption coefficients. Therefore it is widely used in the combustion community. But
this model is only valid for optically thin mediums. Therefore it is imperative to find
the global radiation model that is a non-gray radiation model. Hence in this study,
the Planck mean model is compared with the full spectrum k— distribution method
(FSK). The non-gray radiation models are highly computationally expensive and hence

an independent study is performed to find optimum FSK points required for the study.
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The numerical results of the laminar diffusion hydrogen flame suggest that the FSK
model is more realistic and accurate than the Planck mean model. The non-gray FSK
model reduces the peak temperature considerably and matches very well with the ex-
perimental results. Further, it estimates the radiative heat flux on the boundaries of the
computational domain. In these simulations, molecular diffusivity of the mixture is ob-
tained from Sutherland law assuming unit Schmidt number. There is little deviation
in the temperature profiles due to the fact that Hydrogen being the lightest molecule,
special attention is needed for the estimation of its diffusivity, and therefore, there is a
need for the implementation of a multicomponent diffusion model. The study is further
extended to non-premixed turbulent co-piloted methane combustion to estimate the ra-
diation losses/emissions. The standard SANDIA D flame configuration is considered
for the investigation. For these simulations, the Planck mean model is employed and
is compared with the experimental results. The results reveal satisfactory agreement
with experiments, however, the high fidelity radiation model, which involves the mix-
ing model for the mixture of gases for the FSK method, is required to implement for the
hydrocarbon combustion phenomenon. Nevertheless, the mixing models for the FSK
method are developed and tested for the canonical cases for the purpose of proof of the

concept.

From the study, results reveal that the Planck mean model reduces the peak tempera-
ture by around 180-190 K, whereas the non-gray FSK model shows the huge reduction
of 270-280 K compared to the no radiation making FSK method a realistic radiation
model. The study also concluded with the important results that the maximum radiative
heat flux incident on the air inlet for hydrogen and methane combustion systems are 900
and 236 (W/m?). NO, emission is also evaluated especially for the C H; combustion

case as 145 ppm.
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