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Abstract. Electrostatic properties of the point-plane electrode configuration are 
reviewed in the hyperbolic approximation. Simple expressions for the field in the 
neighbourhood of the tip are derived under the assumption that space-charge distortion 
is absent. Current induced by a charge carrier moving along a field line is investigated 
and the theoretical expressions are compared with experimental results. Finally, 
the problem of the space charge is solved along the tip axis. 

1. Introduction 
A great many investigations in dielectric conduction and breakdown (Nikolopoulos 

1966, Coelho and Sibillot 1970 a), field emission and field ion microscopy (Gomer 1961, 
Drechsler and Henkel 1964) and electrochemistry make use of the point-plane electrode 
configuration with its strongly divergent electric field. 

Apart from the divergence itself, which may be used for example in dielectrophoretic 
separation, another feature of point-plane configurations is that a reasonably low applied 
voltage Y may produce a huge electric field E at the point apex. The widely used approxi- 
mation E t i p  2: V j 5 ,  where r is the radius of curvature at the apex, shows that with a relatively 
sharp tip (say r= 1 pm) and a voltage of, say, 1 kV the magnitude of the apex fields is 
2 x 106 V cni-1. 

In this paper we discuss the validity of the approximation mentioned above; then, 
after considering briefly the motion of a free charge in an empty point-plane configuration, 
we discuss the iiiotion of a charge along the field lines in a space-charge-free medium, 
where the charge carriers are characterized by a mobility p, and calculate transfer times. 

Finally, we take up the problem of the space-charge self-consistent field along the axis. 
Wherever possible, we compare the results with experimental data. 

2. Derivation of the applied field 
2.1. The approximation 

In order to calculate the electric field in thepoint-plane gap, one must first adopt a simple 
geometric approximation. Perhaps the simplest of these is the paraboloid approximation, 
which has been discussed by Nikolopoulos (1966). However, the profile of actual points 
does not fit the shape of a paraboloid, unless the tip radius is rather large. Drechsler and 
Henkel (1964) used a half sphere on a truncated cone. This approximation is likely to fit 
actual tip shapes better, since two independent parameters are involved herein (tip radius 
and shaft angle), but its relative analytical complexity prevents any analysis much more 
detailed than the evaluation of the field along the tip axis, especially if space charge is taken 
into account. 

Consequently, we shall use here the hyperboloid approximation, which also involves two 
parameters and has already been studied by Durand (1966). Using Durand's notations, 
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the tip is generated by the hyperbola of equations 

(1) 
x=a sin 5 cosh r j  
y = a  cos 5 sinh r j  

rotating around the x axis. 
Equations (1) define two orthogonal confocal sets of ellipses and hyperbolas. Since we 

consider the hyperbolas only, 5 must be regarded as the parameter defining the hyperbola. 
Particular values of 5 are 

5=0 (x=O) Oy axis generating the plane 
5= 77/2 (y=O) Ox axis generating an infinitely sharp hyperbola. 

7 is the parameter defining a particular point on the hyperbola defined by 5. 
It is shown in Durand's book that if two of the hyperbolas are equipotential surfaces all 

of the hyperbolas of the set are also equipotentials and, furthermore, that if the origin of 
the potential is taken at the plane x=O (<=O)  the potential V(5) of the hyperbola of 
parameter 5 is 

V(  5) = C In tan (5/2 + r/4) ( 2 )  

where C is a constant depending on the applied voltage. The flux lines of the field generate 
a family of ellipsoids of revolution orthogonal to the hyperboloids, and the value of the 
electric field at point (5, r j )  is 

(3) 
C E(< )- ~ _ _ _ ~  

' ' - a  cos <(cosh2 r j  - sin2 5)1/2' 

The constant C is calculated as follows: under the assumption that the point is sharp, 
If V is the potential of the point, we have the corresponding value of [ is close to ~ / 2 .  

V(77/2- E ) =  V,  with e e l ,  so that, using (2) ,  

or 

Using (4), (2) becomes 
In tan (5/2 + n/4) 

In (2/~)--' V ( 5 ) Z  V -  ( 5 )  

2.2. Field along the axis 

and the plane. In order to do this, we let r j  be zero in equation (3), which now reads 
We shall now calculate the field at any point M of the tip axis (y=O), between the tip 

(6) 
C 

E(<, o)=-< 
and, since x=a sin 5 if r j=O,  

We now consider figure 1. The abscissa of the tip apex S is 

xs=a sin <s=a cos € E a  1 -- i '2') 
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Figure 1. Representation of a point-plane configuration with the 
Note that x + X + r / 2 = a  or u + u f p = l .  

and the distance X between point M and the tip apex is 

various quantities involved. 

(10) 
aC 

(x+ a ~2/2) (2a - X -  a ~2/2)’ E( X) = 

Expanding the denominator to the second power in E ,  E ( X )  reduces to 

Now, it can be easily seen, for instance by expanding the equations of the hyperbola and 
that of a circle of radius r around the common apex x=xs =a cos E and identifying both 
expansions, that the radius of curvature of the hyperbola is 

On the other hand, some algebraic manipulation shows that 

where Q: is a numerical coefficient much smaller than unity. (Note the absence of linear 
terms in the expansion.) Therefore, to a very good approximation, even if the tip is not 
very sharp, 

aC 
X(2a-X)+(a-X)r  

E( x,) = (14) 

with 
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In particular, at the tip (X=O) 
C 
r E(0)  = 2 

and at the plane ( X = a - r / 2 )  
C ED=;. 

Numerical applicatioii. The factor C is Vlk ,  with k =In (2(a/r)l/2}, and the variation of 
k with ajr is represented in figure 2, from which it appears that k is close to 5 for typical 
values of ajr. 

ioz 10' IO4 10' 
air 

Figure 2. Representation of k -  V/C (see text) against air= 1/2p. 

2 I 3. Field OI? the tip in the vicinity of the tip apes  

in this area. 
On the tip { = n / 2 - ~ ,  with ~ < l ,  and since, in the vicinity of the apex, I E X S - - N U ,  ~ < l  

Hence equation (3) giving the magnitude of the field becomes 

or 

where EO is the value of the field at the apex (7 =O). 

than a given value E < EO. To do this, we consider the element of tip of area 
I t  is now possible to calculate the area A(E) of the tip surface where the field is higher 

with 
dY tan 0=- dx 

dx-aq dq 

dy=ac dv. 

Using the above relations, dA becomes 

dA = 2 n a 2 ~ q (  €2 + q2)1/2 dq 
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so that 

or 

Introducing equation (19) in the first term of the brace of (26), we obtain 

A ( E )  = 377a2~4 - - 1 
(:33 ) 

or 

A(E)=+nr2 (Z33- 1). 

0 0 2  0 4  0.6 0 8  I 
€/Eo 

Figure 3. Variation of the area A ( E )  where the field is higher than E< Eo (apex field) for r =  1 pm. 

3. Transfer time from tip to plane 
3.1. Free carriers 

calculated above ($2.2). Its dynamical equation is 
Suppose that a carrier of mass m and charge q is free to move along the axis in the field 

mX= qE( X). (29) 
If we assume that the carrier starts at rest from the apex (X=O),  the transfer time, accord- 

ing to the value of E ( X )  given by (14), can be written as 

where 
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The integrand in (30) diverges for v+O at the tip apex. However, it is easily seen that, 
to the first-order approximation in the expansion in terms of U ,  

Therefore the integral in (30) behaves, in the neighbourhood of u=O, as 

and consequently the integral in (30) can be separated as follows : 

with 

and 

J 1  = j [ . . . ]-U2 dz; = 2 4 0  
{ p 2 (  I + p"11'4 

0 

JZ can be evaluated with a digital computer. We have chosen ~ = l O - ~ p ,  but we have 
verified that the final result is independent of the choice of c-provided that U <  1-within 
the accuracy of the calculation. 

The results are presented below for a= 1 cm and V =  103 V. 

Table 1. Transfer times in vacuo for electrons and singly charged ions of mass M =  16 
without initial velocity, for a = 1 cm and V =  1 kV 

( m  In (2/!;:+ p2)"2 T (el) T (ion) = 17 1 T (el) 
(SI (s) 

1 *06 x 10-7 0.5 x 10-3 I *61 x 10-9 0.386 6.2 x 10-lO 
0.5 x 10-4 1.82 x 10-9 0.332 6.05 x 1 e03 x 10-7 

P 

0.5 x 10-5 2.01 x 10-9 0.296 5.95x 10-10 1 . 0 2 ~  10-7 

3.2. Bound carriers mouing along afield line o f t h e  axis 

parameter 7 .  
We now assume that the carrier moves with the mobility p along a field line defined by the 

Its position on this line is defined by 5 ,  and its motion obeys the equation 

ds 
dt 
-- - - PEC 

where 

Hence 

or, using (3), 
U2 

PC 
dt = - - cos C(cosh2 77 - sin2 5 )  dc. 
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Hence the transit time from the point (<= 7712- e )  to the plane ( ( = O )  is 

R. Coelho and J .  Debeau 

n 

n/2-& 

or 

For v=O (axis), one finds the simple result To=2a2/3pC. 

V= lo4 V, we find TO =Om35 s. 
Numerical application. If we assume a= 1 cm with air= 104, p= 10-3 cm2 V-1 s-1 and 

4. Induced current 
In order to find the current induced in tlie external circuit by charges moving within 

the electrode gap, we first assume that the charges are positive and we further assume 
that the tip and the plane form a total influence capacitor. We then apply the principle 
of superposition to the system described below : 

Charges Potentials 
Charge Tip Plane Charge Tip Plane 

1 st configuration rl Qi Q? Vsr 0 0 
2nd configuration 0 Q‘i Q‘B V’17.I V‘1 V’.? 

Ql and Q2 are the negative charges induced on the tip and plane respectively, assumed at 
potential 0, by the charge q at M where the potential is Vhr. In the second configuration, 
the charges Q’ and potentials are defined in the same manner but in the absence of the 
moving charge, so that V’M = V(<).  

Since all tubes of flux at M reach both electrodes, 

q+Qi+Qz=O. (43) 

(44) 

Furthermore, if Green’s reciprocation theorem is applied for configurations 1 and 2, 

V’N + Qi V’i + Qz V’z = 0. 

Combining (43) and (44) gives Ql and Q? : 

V”- V‘2,l 

v 1,z-  v 2 , 1  
4. Q1,2 = - ?---,- (45) 

In our problem V’Z is the potential of the tip with respect to that of the plane (V’l=O). 
Hence the charge Q1 induced on the plane in configuration 1 is 

The current induced in the external circuit by the charge q moving oh its flux lines is 
given by the rate of change of Ql : 

or 
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From (2) 

From (23) 

and from (3) 

Finally 

In order to relate i to the time t after the charge q has left the tip, we must go back to 
equation (40) which, integrated from the tip (1= 7r/2 - E) to a point of parameter 1: # 0, gives 

t(5,  7)= -E cos 5 (cosh2 T-sin2 5) dc (53) 
n/2-  E 

PC 

or 

that is 
1 I 

Finally, i(t) is defined, for a given flux line 7, by the parametric equations (52) and ( 5 9 ,  
from which the set of curves of figure 4, corresponding to values of sinh 7 between 0 (tip 
axis) and 1, has been obtained. 

7 

Figure 4. Variation of I =  ( $ v / q ~ C z )  i(f, 7 )  against T =  ( ~ C / a z )  t(6, T )  (cf. text, equations (52) and 
(55)). Full curve: sinh 7 = 0 (on axis). Broken curves: sinh r]  > 0 (off axis). For 0 < sinh 7 < 1, 

97 
only partial curves have been drawn for clarity. 
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Single prebreakdown current transients can be observed with a t ipplane electrode 
configuration immersed in liquid dielectrics such as liquid nitrogen (Coelho and Sibillot 
1970 a), when the applied voltage is carefully adjusted to the prebreakdown threshold level. 
Such a transient, shown in figure 5, results from the motion from tip to plane of charge 
released by a single breakdown event. 

Figure 5 .  Experimental recording of a single current pulse in liquid nitrogen, presumably due to 
the motion of a diffuse charge from the point to the plane (V= 15 kV, d=0.34 cm). 

As suggested from optical observations (Farazmand 1968, Chadband and Wright 1963, 
a prebreakdown event generates charge carriers with momentum in all directions about the 
tip axis, and the actual transient of figure 5 might possibly be regarded as a properly 
weighted summation, over a wide range of 7, of transients such as those shown in figure 
4. Conversely, an analysis of actual transients in terms of the elementary transients might prove 
worthwhile in breakdown studies. 

5. Space-charge distortion 
Up to this point, it was assumed that the space between the point and the plane is free 

of charge, so that the field is identical to the ‘geometric’ field given by Laplace’s equation. 
We now drop this restricting assumption and consider the steady-state situation occurring 

when the tip emits charges of mobility p into a condensed phase of permittivity E .  

The sign of the emitted charges is assumed to be that of the tip, the mobility p is assumed 
to be independent of the field strength and the diffusion current is assumed to be negligible 
with respect to the conduction current. 

5 . 1 .  Derication and solution of the self-consistentjield equation 
Under these conditions, the current density at any point of the gap is given by 

j = n e p E  (56)  

ne=cV.E .  (57) 

where ne is related to the field by Poisson’s equation 
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Relations (56) and (57) combine to give 

j =  ~ E ( V .  E )  E 
and, in the steady state, we have 

or 
V . j =  ~ E V .  { ( V .  E )  E}=O 

( V .  E ) 2  + E .  V ( V .  E )  =Om 

Owing to the presence of space charge, the hyperboloids defined by (1) are no longer 
equipotential surfaces. I t  is, however, advisable to keep the same coordinate system, 
or, more precisely, the three-dimensional system deduced from (1) by the transformation 

.XI = .- y sin $I= - a  sinh 7 cos sin $I 
y ’ = . - y c o s $ = - a s i n h y c o s  ~ C O S  $ 
z’=.x=a cosh 7 sin 

where $I is the polar angle with respect to the z‘ axis. Under these conditions, the divergence 
of a vector E for a configuration possessing symmetry of revolution around z’ is (Angot 1953) 

1 2 sinh2 7 + cos2 2 cos2 e+ sinh2 7 1 aE aE, 
cot s-- V E = -  E - tanh 7 71 

‘ a43 i 
where 

4 = (cosh2 7 - sin2 1)1/2. 

The problem of finding the general solution of (60), in which V . E  has the value given 
above, is obviously of inextricable complexity. 

However, the problem is considerably simplified if we forget our attempt to calculate 
the field at any point and restrict our ambition to the calculation of the field on the tip 
axis, where 7=0. Since E, is an even function of 7 such as Eo=O, the expansion of E? 
for small values of 7 is of the form E? = 0172 + Pq4 + . . . and consequently 

and, since A,=, = cos 5, 
2 sin 5 1 aE, (V. E),=o - -_ a cos2 5 + c c  -ag’ 

The gradient of this quantity, which is directed along the axis, takes the simple form 

After deriving from (66) the expressions for E.V(V . E )  and ( V .  E)2 on the axis and 
introducing these expressions in (60), the latter becomes 

dE2 5 tan 5 -- -4E2=0. d2E2 _ _ _  
de2 de 

Since 5 is the only variable of our problem, the partial derivatives a/a< have been replaced 

By letting Y= E2 cos4 e,  the second-order differential equation (67) can be converted 
here by total derivatives and the index 

into the equation 

is dropped for convenience. 

d2Y d Y  ---+3 tan <-=O 
dC2 de 

where the term of order zero has disappeared. 
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Integration of equation (68) is straightforward : 

R. Coelho and J. Debeau 

so that 

Y = A  ( sin(--- si; I)+, 

where A and B are the constants of integration. 
Finally, one obtains for E the expression 

or, using (1) and letting U be x/a,  

{Au( 1 - ~ 2 1 3 )  + B}1/2 
1-242 

E(u) = (72) 

Remarks. (a) Relation (71) should be compared with the relation E=B‘/cos2 5 
obtained in the absence of space charge. (b) The constant A is negative, since the magnitude 
of E when space charge is present is smaller, close to the emitter, than in the absence of 
space charge. 

A relation between A and B is obtained by writing that the voltage drop between the 
electrodes is V :  

I p E ( u )  du=-- V 
a’ 

0 

(73) 

5.2. Signijicance of the integration constants 
5.2.1. Signijicance of A .  Introducing (71) into relation (58) to give the current density 

j yields 

j=- (F cos <-4Ec sin 5 
2a cos2 5 

with 

E 2  cos4 ( = A  ( sin 5----- si? ‘)+B. 

Differentiating (75) gives 

dEc2 _ _  cos4 5 - 4E,2 sin 5 = A .  
dt: 

Consequently 

In particular, at the plane ((=O), 

(74) 

(75) 

Relation between A and the total emitted current. Even under the unrealistic assumptions 
that (a) the space-charge-limited current off the axis could be obtained analytically and 
(b) the plane electrode is of infinite radius, one must keep in mind that most of the current 
is injected from the tip, where the field is a maximum, since all charge injection processes such 
as Schottky or field emission depend sharply on the field. 
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20 I 
j (plane 1 

y$:- 

* O l  

Figure 6. Hypothetical current density distribution on the plane and its simplified approximation 
(cf. equation (79)). (a) Actual j distribution. (b) Assumed j distribution. 

Accordingly, the current density on the plane, vanishing rapidly with increasing distance 
from the tip axis, is sketched in figure 6(a). The tip-plane distance being very close to a, 
the area of the plane at a distance less than a from the axis is seen from the tip as the angle 
~ / 4  rad (solid angle 0 . 6 ~  sr) compatible with the experimental conditions. 

In  view of the insoluble uncertainty in the actual current density profile, the latter can be 
roughly approximated as that of figure 6(b). This approximation relates A to the emitted 
current I by 

T I= n-a2jo=% at-PA. 

Hence 

5.2.2. SigniJicance of B. 
Equation (72) can be rewritten as 

B can be related to the value of E at the tip apex as follows. 

(1-u2)2E2=Au (80) 

and, at the point apex (u=up), (80) takes the form 

where up and Ep are the values of U and E at the point apex (U =O). 
Elimination of B between (80) and (81) gives 

(82) 
A (1 -U')' E2=(1  --U p ) Ep2-T   up-^) (3-up2-upu-u2) 

or, coming back to the variable E ,  weycan write E in the form 

and relation (73) becomes 
1--P 

V E(v)  do= --. ! a 
0 

5 . 3 .  Integration of E(v) 

vicinity of the apex (U-0) on the one hand, and the rest of the domain. 
In order to integrate (83) conveniently, the domain of integration can be divided into the 
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In the vicinity of the apex, the second term in the brace of (83) is negligible with respect 
to the first, so that 

and 

By expanding the logarithm of (86) in terms of increasing powers of U ,  accounting for the 
fact that p < 1, and coming back to the variable X, it appears that, in the vicinity of the apex, 

which shows that the voltage deviates very quickly from linearity near the tip apex. 
On the other hand, if the current is space-charge limited, the emitter field vanishes, so that 

and analytic integration of E(v) is possible if p is neglected with respect to unity. 
this assumption, 

Under 

or 

5.4. Graphical representation 

voltage drop Vas defined by the integral 
Figure 7 represents the variation of (-A)l/Z against V for various values of Ep. The 

l j  'E(u, A )  do 
0 

has been calculated in the following way. The domain of the variable U has been divided 
into two subdomains (0-0.01) and (0.01-p). 

The integration was performed analytically in the first domain according to equation (86) 
and numerically in the second one. 

All the curves are asymptotic to the straight line of the equation (- A)1/2 = V/O*624a. From 
the (dZ, V )  characteristics it is possible to deduce the mobility of the injected carriers, 
under the reasonable simplifying assumption that the slope of the curve is identical with that 
of the straight line. 

The family of curves (-A)1/2=f(V, r )  for given E,, can be deduced from figure (8) by 
noting that V varies slowly with Y for a given value of rE, = k.  Hence figure 8 represents 
roughly the curves 

(- =f( V,  k = Y E P )  

from which the curves ( -A)1/2 =f (c ,  Y ) I E ~ = ~ ~ ~ ~ ~ ~ ~ ~  can be obtained. 
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t - -  - 

5 IO 15 20 
V ( k V 1  

t - -  - 

5 IO 15 20 
V ( k V 1  

Figure 7 .  (- A)1/2 against V for various values of ED (apex field) with r = 0.1 p m  and U =  1 cm. 

Figure 8. 
values of 

- p)  for various 
cm-1 (no space 

The value of the totally space-charge-limited current, as obtained from (79) and (89), is 

7T vz 
0.78 " a I =  

and it is worth comparing this relation with that obtained in spherical geometry (Coelho 
and Sibillot 1970) with the same injection solid angle 0 = 0 . 6 n :  

7T v2 Is=- Ep-. 4.45 a 
This gives I/Is = 5.7, 
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Finally, the curves E(u) for various values of the current I, from 1=0 (no space charge) 
to the maximum value given by (90) for complete space-charge limitation, are represented 
in figure 8. 

R. Coelho and J. Debeau 

The general shape of the curves agrees with that predicted by Atten (1970). 

6. Conclusion 
For a point-plane electrode configuration approximated by a hyperboloid plan system, 

most of the characteristic properties of practical importance to the engineer (field distri- 
bution, transfer times, etc.) have been analysed. 

In particular, straightforward assumptions permit the prediction of the variation of the 
partially space-charge-limited current with the applied voltage and the derivation from the 
current-voltage characteristics of a rough determination of the mobility of the injected 
charge carriers. 
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