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Abstract Non-equilibrium fission has been described by diffusion model. In order to describe the diffusion process
analytically, the analytical solution of Smoluchowski equation in harmonic oscillator potential is obtained. This analytical
solution is able to describe the probability distribution and the diffusive current with the variable x and t. The results
indicate that the probability distribution and the diffusive current are relevant to the initial distribution shape, initial
position, and the nuclear temperature T ; the time to reach the quasi-stationary state is proportional to friction coefficient
β, but is independent of the initial distribution status and the nuclear temperature T . The prerequisites of negative
diffusive current are justified. This method provides an approach to describe the diffusion process for fissile process in
complicated potentials analytically.

PACS numbers: 25.70.Jj, 25.85.Ge
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1 Introduction
Nuclear fission is a complicated nuclear reaction pro-

cess, and has important value on nuclear power appli-
cation. The Bohr–Wheeler formula of fission rate is es-
tablished based on equilibrium statistical theory.[1] On
the other hand the induced nuclear fission can also be
viewed as a diffusion process over a potential barrier.
Kramers derived the formula for fission width in a quasi-
stationary approximation by solving the Fokker–Planck
equation.[2] Obviously, there really exists a transient time
tq between the beginning of the diffusion process and the
attainment of the quasi-stationary. Indeed, the experi-
mental data indicate that the number of light particles
evaporated in a heavy-ion induced reaction prior to fis-
sion considerably exceeds the expectations based on the
statistical model.[3−5] Thus, the research on the transient
process in diffusion model is very necessary. In order to
explain the experimental data and research nuclear dissi-
pation mechanism, the transient behaviors of the fission
rate have been studied by solving the Fokker–Planck equa-
tion numerically.[6−8] However, it is very difficult to solve
Fokker–Planck equation analytically, so there are only few
analytical solutions to some special problems.[9,10] How-
ever, if the friction coefficient β is so large that equilibra-
tion in momentum space is very rapid, then the Fokker–
Planck equation is translated into the Smoluchowski equa-
tion, which describes dissipation only in x space. In terms
of the Van Kampen method,[11] the Smoluchowski equa-
tion can be solved in an analytical approach. But in this
method there are some unphysical features as mentioned
in Ref. [12]. For instance, there is no simple way to show
how the fission rates will be changed with nucleon tem-
perature T , once the fission potential V (x) is fixed.

So far the diffusion model is the only method to de-
scribe the non-equilibrium nuclear fission process, so the
study on the diffusion model becomes very important.
This status prompts us to carry out the present investiga-
tion. In order to understand the physical behaviors of the
diffusive process in the harmonic oscillator potential, the
analytical solution of the Smoluchowski equation has been
obtained in this paper. The results show that the diffu-
sive process behaves with a non-equilibrium feature. The
probability distribution and the diffusive current are rele-
vant to the initial status and the nuclear temperature T ,
the time tq to reach quasi-stationary distribution increases
with increasing friction constant β. In some cases the neg-
ative diffusive current would occur and be analyzed. The
analytical solution can clearly reflect the influence of every
physical quantity on the diffusion process with the simple
form. This method provides an approach to make the an-
alytical description of the fissile diffusion process in even
complicated potentials.

The analytical probability distributions P (x, t) of the
Smoluchowski equation in harmonic oscillator potential
are presented in Sec. 2. In Sec. 3 the analytical diffusive
current J(x, t) and the prerequisite of the negative current
have been given. In Sec. 4, the influence of the physical
quantity on the diffusive process is discussed. The analysis
and prospects are elaborated in the last section.

2 Analytical Solution of Smoluchowski Equa-
tion
Induced nuclear fission can be viewed as a diffusion

process over the fission barrier, and can be described by
means of the Fokker–Planck equation, which contains the
fission variable and its canonically conjugate momentum.
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Chandrasekhar reviewed the transition from the Fokker–
Planck equation to the Smoluchowski equation,[13] which
describes dissipation only in the x space, when the friction
coefficient β is so large that equilibration in momentum
space is very rapid. The Smoluchowski equation reads

∂

∂t
P (x, t) =

1
β

∂

∂x
[K(x)P (x, t)] +

1
β2

ε
∂2

∂x2
P (x, t) . (1)

Here, P (x, t) is the probability distribution in x space, x

is the fission variable; K(x) ≡ (1/µ)(dV (x)/dx), where
V (x) stands for the fission potential; ε ≡ βT/µ, T is
the nuclear temperature and µ refers to reduced mass,
respectively.[11,12] Since the Smoluchowski equation (1)
has a simple scaling property as β is changed, to apply
this fact, a new “time” τ = t/βh̄2 = c2t/β(h̄c)2 is em-
ployed in this paper. Thus equation (1) depends only on
x and τ , and hence has a common form as

∂P (x, τ)
∂τ

= − ∂

∂x
[C(x)P (x, τ)] + D

∂2

∂x2
P (x, τ) , (2)

where the drifting coefficient is C(x) = −(h̄ω)2x. The
harmonic oscillator potential in new scaling reads

V (x) =
µc2(h̄ω)2

2(h̄c)2
x2 . (3)

Here, ω is the harmonic-oscillator frequency, c = 3 ×
1023 fm · s−1 is light velocity and h̄c = 197.33 MeV · fm,
respectively. The diffusion coefficient D = (h̄c)2T/µc2

depends on T/µc2, which is independent of x, so we no
longer discuss the influence of µ in this paper because µ

is always accompanying with the temperature T .
The analytical solution of Eq. (2) can be written in the

form as

P (x, τ) =
1√

2πDσ(τ)
exp

{
− [x− χ(τ)]2

2Dσ(τ)

}
. (4)

Obviously, the normalization condition
∞∫
−∞

P (x, τ)dx = 1

always holds. Substituting Eq. (4) into Eq. (2), three
equations for different x powers can be issued.

The coefficients of x0 is obtained by

χ2(τ)
2Dσ(τ)

[ dσ(τ)
dτ

− 2
]
− 1

2
dσ(τ)

dτ
− χ(τ)

D

dχ(x)
dx

− (h̄ω)2σ(τ) + 1 = 0 . (5)

The coefficients of x1 is obtained by

σ(τ)
dχ(τ)

dτ
− χ(τ)

dσ(τ)
dτ

− (h̄ω)2σ(τ)χ(τ) + 2χ(τ) = 0 . (6)

The coefficients of x2 gives the equation of σ(τ),

dσ(τ)
dτ

= −2(h̄ω)2σ(τ) + 2 . (7)

Substituting Eq. (7) into Eq. (6), the equation of χ(τ) is
given by

dχ(τ)
dτ

= −(h̄ω)2χ(τ) . (8)

Substituting Eqs. (7) and (8) into Eq. (5), one can find
that equation (5) is naturally satisfied. This fact implies
the correctness of the analytical representation of Eq. (4).

The initial probability distributions is taken as a nor-
malized Gaussian form,

P (x, τ = 0) =
1√

2πσ0

exp
{
− (x− x0)2

2σ2
0

}
, (9)

where the position of the peak at x = x0, as shown in
Fig. 1.

Fig. 1 Harmonic oscillator potential and the initial dis-
tributions.

With the initial condition of Eq. (9), the analytical
solution of Eqs. (7) and (8) can be easily obtained as

σ(τ) =
σ2

0

D
e−2(h̄ω)2τ +

1
(h̄ω)2

(1− e−2(h̄ω)2τ ) , (10)

χ(τ) = x0 e−(h̄ω)2τ . (11)

Obviously,

σ(0) =
σ2

0

D
, σ(∞) =

1
(h̄ω)2

,

χ(0) = x0, χ(∞) = 0 .

When τ →∞, the quasi-stationary probability distri-
butions is given by

P (x, τ →∞) =
h̄ω√
2πD

exp
{
− (h̄ω)2

2D
x2

}
=

h̄ω

h̄c

√
µc2

2πT
exp

{
− (h̄ω)2

2(h̄c)2
µc2

T
x2

}
. (12)

3 Diffusive Current in Harmonic Oscillator
Potential
If the Smoluchowski equation is written into the con-

tinuity equation form as

∂

∂t
P (x, t) +∇ · J(x, t) = 0 . (13)
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It is convenient to express the diffusive current with x and
τ .

J(x, τ) = − (h̄c)2

µc2

dV (x)
dx

P (x, τ)

− (h̄c)2

µc2
T

dP (x, τ)
dx

. (14)

Inserting Eqs. (4), (10), and (11) into Eq. (14), the
analytical expression of the diffusive current is obtained
by

J(x, τ) =
x− χ(τ)− (h̄ω)2σ(τ)x

σ(τ)
P (x, τ) . (15)

Obviously, for τ → 0 the diffusive current has the form as

J(x, τ ≈ 0) =
[D − (h̄ω)2σ2

0 ]x−Dx0

σ2
0

P (x, τ ≈ 0) . (16)

For sufficiently large τ the diffusive current should van-
ish,

J(x, τ →∞) = 0 . (17)

Because P (x, τ) and σ(τ) always have positive values
for any x or τ , hence, it is possible to have the negative
current J(x, τ) < 0, if the inequality

[1− (h̄ω)2σ(τ)]x < χ(τ) (18)

holds. Substituting Eqs. (10) and (11) into Eq. (18), the
condition (18) becomes[

1− (h̄ω)2

D
σ2

0

]
x < x0 e(h̄ω)2τ . (19)

When τ or |x| is sufficiently large, equation (15) implies
P (x, τ) → 0 and J(x, τ) → 0, so the negative current is
not easy to be observed. Only at a small value of τ can the
negative current be observed. Without losing generality,
x0 < 0 is taken, which means that the probability locates
at the left side of the potential well.

i) When [1 − (h̄ω)2σ2
0/D] > 0, or D > (h̄ω)2

×σ2
0 is satisfied, there is negative current at x <

x0 e(h̄ω)2τ/[1− (h̄ω)2σ2
0/D] region. In this region, the dif-

fusive behavior is quicker than the drifting velocity. The
peak of the initial distribution with the Gaussian form

suddenly collapses, at the same time its bottom extends
to both sides. We call this phenomenon as “Gaussian
Collapses”. This case is corresponding to the high nuclear
temperature and narrow initial configuration.

ii) When [1 − (h̄ω)2σ2
0/D] < 0, or D < (h̄ω)2

×σ2
0 is satisfied, there is negative current at x >

−x0 e(h̄ω)2τ/[(h̄ω)2σ2
0/D − 1] region. In this region, the

width of the quasi-equilibrium distribution is narrower
than the width of the initial distribution, so the ini-
tial distribution shrinks towards the center of the quasi-
equilibrium distribution. We call this phenomenon as
“Gaussian Shrinks”. This case is corresponding to the low
nuclear temperature and very wide initial configuration.
But for this configuration, the probability density com-
monly is very small at x > −x0, so the negative current
is not easily observed.

4 Relationship of Probability Distribution
and Diffusive Current with Initial Distri-
bution and Nuclear Temperature
According to the analytical expressions of the proba-

bility distribution and the diffusive current, “time” τq for
attaining quasi-stationary distribution can be decided by
the factor exp{−(h̄ω)2τq} ≈ 0.01, which yields

τq ≈
4.6

(h̄ω)2
. (20)

Translating into the real time

tq ≈ 4.6
β

ω2
. (21)

As mentioned above, Smoluchowski equation only suits
for large friction, namely β ≥ 5 × 1021 s−1. If taking
h̄ω ≈ 1 MeV, then tq ≥ 1 × 10−21 s. Equation (21) indi-
cates that tq is proportional to β and ω−2, but indepen-
dent of T , as well as the initial distribution. The larger
β is, the slower the diffusion process is. Contrarily, the
larger h̄ω is, the quicker the diffusion process is. In this
paper, we take h̄ω = 1.0 MeV and µ = 63.5 m, where m

is the nucleon mass, as same as used in Ref. [12].

Fig. 2 The relationship of the probability distribution with the width of the initial widths.
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For different initial distribution widths σ0 = 0.1, 0.3, 0.5 fm, respectively, with T = 1.0 MeV, and x0 = −1.0 fm,
the evolution of the probability distributions P (x, τ) with time is shown in Fig. 2, from which we can see that the
narrower σ0 is, the quicker the evolution is. Finally, they reach the quasi-stationary state simultaneously.

Fig. 3 The relationship of the probability distribution with the position of the initial position.

Figure 3 shows the evolution of the probability distributions P (x, τ) for different initial position x0 = −1.0, −2.0,
−3.0 fm, respectively, with T = 1.0 MeV and σ0 = 0.3 fm. The results show that the lager the value |x0| is, the quicker
the drift velocity is. The shape of P (x, τ) is the same at any time, although x0 is different from one another.

Fig. 4 The relationship of the probability with the nuclear temperature.

In Fig. 4 the relationship of P (x, τ) vs. x with the nuclear temperature T = 1.0, 3.0, 5.0 MeV, respectively, with
x0 = −1.0 fm and σ0 = 0.3 fm is given. The results indicate that the higher T is, the wider the quasi-stationary
distribution is.

Fig. 5 The relationship of the diffusive current with the width of the initial distribution.

Figure 5 shows the diffusive current J(x, τ) for initial width σ0 = 0.1, 0.3, 0.5 fm, respectively, with T = 1.0 MeV,
x0 = −1.0 fm. In quasi-stationary state J(x, τ → ∞) tends to zero. The wider σ0 is, the slower J(x, τ) is at each
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time. Since the widths are small in Figs. 5(a) and 5(b), so the negative current occurs at x < x0 region. This is the
“Gaussian Collapses” phenomenon.

The relationship of diffusive current J(x, τ) with the initial position are shown in Fig. 6 for x0 = −1.0, −2.0,
−3.0 fm, respectively, with T = 1.0 MeV and σ0 = 0.3 fm. The further away it is from the well, the quicker the
diffusive current is.

Fig. 6 The relationship of the diffusive current with the position of the initial distribution.

Fig. 7 The relationship of the diffusive current with the nuclear temperature.

Figure 7 shows the relationship of diffusive current J(x, τ) with the temperature for T = 1.0, 3.0, 5.0 MeV, respec-
tively, with x0 = −1.0 fm and σ0 = 0.3 fm. The higher the temperature is, the rapider the diffusive current is, and the
more obvious the negative current is. This phenomenon is in accordance with the discussion of Sec. 3.

5 Summary
In summary, the approach to get the analytical solution of Smoluchowski equation in one dimension at harmonic

oscillator potential is expounded in detail. We analyze the laws of the probability distribution and the diffusive current
at different initial conditions and the nuclear temperatures. Of course, the influence from the reduced mass, as well
as the harmonic-oscillator frequency is obvious. The former is always accompanied with the temperature, the change
of the reduced mass being corresponding to the change of the temperature, while the latter is always accompanied
with the “time” τ , with the increasing of the frequency the diffusion process being more quicker. The calculated
results indicate that the time to reach the quasi-stationary state is proportional to β and ω−2. The evolution of
probability distributions and the diffusive current have been shown in the figures, with different initial distribution
and nuclear temperature T . There is “Gaussian Collapses” phenomenon, when the nuclear temperature T is high and
the initial distribution width σ0 is narrow. Also there is “Gauss Shrinks” phenomenon, when T is low and σ0 is wide.
The analytical representation of Smoluchowski equation is simple and can reflect clearly the influence on the diffusive
process with every physical quantity. This approach to solve the Smoluchowski equation analytically may go a step
further for more complicated potentials to study the fission processes in the future.
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