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Time-dependent scattering theory for infinite delta function 
potentials in one dimension 

John D. Dollard 

Mathematics Department, University of Texas, Austin, Texas 78712 
(Received 5 July 1977) 

Existence of the Maller wave operators is proved for a system of n quantum mechanical particles 
interacting through infinite delta function potentials in one dimension. 

INTRODUCTION 

There has been some discussion in the literature of 
n-body quantum-mechanical systems in one dimen
sion with interaction between the particles provided 
by "infinite delta function potentials" (see for example, 
Refs. 1,2). Such systems have extremely simple prop
erties and are worth study for this very reason. Scat
tering theory for these systems (and others) has been 
analyzed in using time-independent methods. The pur
pose of the present note is merely to point out that the 
corresponding time-dependent version of scattering 
theory can be given for these systems: the Mpller wave 
operators exist and the S matrix is unitary. The proofs 
are very simple, and in the present author's opinion 
some salient features of the theory stand out more 
clearly in the time-dependent version. 

1. THE HAMILTONIAN 

To reinforce the reader's intuition, we consider 
first the case of one particle in a potential. We wish to 
make sense of the operator 

1 rf-
H = - - - + 006(x) 

2m dX2 
(1) 

on the Hilbert space U(R). Intuitively, the idea to be 
exploited is that the particle cannot pass through the 
origin. Thus it is natural to view L2(R) as the direct 
sum of U(- 00. 0) and U(O, 00). On each of the latter 
spaces, H should act like the free Hamiltonian Ho 
=-(1/2m)rf-Idx2 with zero boundary conditions at x=O. 
To apply this latter operator to a function lj; E U(O, 00) 
means: Take the Fourier sine transform ~ of W, multiply 
~ by /(2 12m, and take the inverse Fourier sine trans
form of the result. This is equivalent to the following: 
Take the odd extension of W to obtain a function ?Dodd in 
L 2 (R), apply the free Hamiltonian Ho [considered as an 
operator on U(R) in the usual way] to 'todd' and truncate 
Hoif;odd to obtain a function in U(O, 00). By this kind of 
analysis. we arrive at the following description of the 
operator H: Define operators P± and A on L 2 (R) as fol
lows: 

{
W(X) 

(P+W)(x) = 0 
(X>O), 

(x < 0), 

(x> 0), 

(P_lj;) (x) = L(:) (X< 0), 

(Aw)(x) = lj;(x)-lj;(-x). 

Then 

(2) 

(3) 

(4) 

(5) 

Naturally the situation we have just discussed is equiv
alent to a two-body problem in which the center-of
mass coordinate has been separated out. If we inter
pret x as the relative coordinate Xl - x2 of this two
body problem, then the conditions x> 0 and x < 0 cor
respond to Xl> X 2 and x2 > xl' The definition of the 
n-body Hamiltonian 

n 1 rf-
H="6--

2 
--d 2 +6 oo6(x/-x j ) (6) 

/=1 ml Xi i<j 

is given in terms of operators projecting on subspaces 
of L2(Rn) in which a certain order XiI> Xi2 > ••• > Xin 
prevails among the particle coordinates. 

Let Sn be the symmetric group on n elements, and 
for each 'lTES n let Sr be the following subset of R n

: 

S. ={(xu ... ,xn)1 xn >x. 2 >.o. >xrJ. 

Let P r be the following projection in L2(Rn): 

(P.<]J)(x1 ,···, xn) 

= {1jJ(Xu '0' • ,xn ) if (Xl' ••• ,Xn)ES r , 

otherwise. 

Let a ('IT) be the parity of the permutation 'IT, and letA 
be the following operator on U(Rn): 

(7) 

(8) 

(A</J)(xl , ••• , xn)=L; a(7T)</J(xrH x rz ,"" x,n)o (9) 
rC:: s" 

It is easy to verify that 

P.AP. =P., AP,.A =Ao 

Writing 

the definition of H is now simply 

We have correspondingly 

elHt=L P.exp(iHot)APr • 
rES n 

(10) 

(11) 

(12) 

(13) 

It should be noted that Hand Ho both commute with A. 

2. SCATTERING THEORY 

We will establish existence of the Mpller wave opera
tors 
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W± = s-lim exp(iHt) exp( - iHot). (14) 
t":I::" 

We do not attempt the usual proof in which exp(iHt) 
x exp(-iHot) is differentiated with respect to t, because 
Hand Ho do not have the same domain. Instead we pro
ceed as follows: Let F: L2(Rn) - U(Rn) denote the opera
tion of Fourier transformation in all the variables. 
Let C t be the operator defined for t*O by 

n11o"" n1 n '6 m ;x; ( )1/2 ( n 2 ) 
(Ct</J)(xlO ... ,xn)= (it)n/2 exp 1'_I---U-

.- (15) 

(~ ~) x (F</J) t ' ••• 't • 

Then we have for any <b EO U(Rn) (see Ref. 3) 

lim II exp(-iHot)</J-ct</J11 =0. 
t .. :1:: 00 

Now 

exp(iHt) exp(- iHot) 

=1. P"Aexp(iHot)Prexp(-iHot) 
rES n 

where 

(16) 

(17) 

(18) 

Let rp, </JEOU(Rn
). By (16) we have (in the sense that the 

difference of the two sides goes to zero) 

(rp, B .(t)</J) 

=(exp(- iHot)rp, P, exp(-Hot)/ji) t::~ (Ctrp, p.Ct</J) 

= (mI' .. mnl I tl n) J R n (Frp)(mIxIlt, .•• ,mnx/t) 

Making the change of variables kl = mIxl/t, •.. , kn 
= mnxi t, we obtain 

(rp,B.(t)</J)t-:±~ J (Frp)(k l ,···, kn)Pu 

x (F</J)(k l , •.. ,kn)dkl • •. dkn, (20) 

where + 1T = 1T and -1T is defined as follows: If 

1T = (:1 :2 ." ;n). 

then 

(
1 2 

-1T = 1Tn 1T(n _ 1) •.. 

Equation (20) can be rewritten as follows: 

(21) 
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Thus 

exp(iHt) exp( - iHot) weak ) L P "Ap-IPu F:; W.. (22) t-... rEO s" 

Now using (10) and the facts that F* =F-I and F com
mutes with A, we have 

W:W.= 6 F-IP ... FAP"P.AF"IP .. F 
• ... ESn 

=L p-Ip FAP ,AF-Ip ,F 
wE Sn:l::r 

± 

=L F-IP.,FAF-IP.,F 
r'O: s" 

=L F-IP •• F=L 
rEs" 

(23) 

Since the unitary operator exp(iHt) exp(- iHot) con
verges weakly to W., and since by (23) w. is an iso
metry, it follows that the convergence in (22) is in fact 
strong. Thus existence of a scattering theory in the 
time-dependent sense is established: A calculation 
similar to (23) shows that W.W: =1 so that, as expected 
in a theory with no bound states, the M~ller wave opera
tors are unitary. The S matrix W:W_ is then obviously 
unitary. A calculation similar to (23) yields 

S=W:W_=L F-IP,AP_rF 
rES n 

=L p-Ip -rAP,F. (24) 
rES n 

Viewed in momentum space, the S matrix has the ex
tremely simple form 

FSF-I =L P -"APr. (25) 
rES n 

This equation states that a contribution to the incoming 
wave function at given momenta krl > kr2 > .•• > k. n 

(particle 1Ti having momentum krl will produce a con
tribution to the outgoing wave function in which particle 
1T1 has momentum krn' particle 1T2 has a momentum 
k1T(n - 1), etc. This is the expected result: The scat
tering at given k'l > kr2 > •.. > k.n exactly mimics the 
behavior of classical point particles on a line under
going elastic collisions, in which they exchange momen
ta. 

ACKNOWLEDGMENT 

I wish to thank Charles Radin for several interesting 
discussions. 

lCharles Radin, "The dynamical instability of nonrelativistic 
many-body systems," Commun. Math. Phys. 54, 69-81 
(1977), 

2J. B. McGuire, "Study of exactly soluble one-dimensional 
N-body problems," J. Math. Phys. 5, 622-25 (1964). 

3J. D. Dollard, "Quantum-Mechanical scattering theory for 
short-range and Coulomb interactions," Rocky Mtn. J. Math. 
1, 5-88 (1971). 

John D. Dollard 807 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

103.21.127.78 On: Mon, 12 Oct 2015 07:24:06


