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Rotational Brownian Motion of the Proton Crane operating in a 
Photoinduced Long-distance Intramolecular Proton Transfer 

C. Jojakim Jalink, A. Herbert Huizer and Cyril A. G. 0. Varma" 
State University Leiden, Chemistry Department, Gorlaeus Laboratories, P.O. Box 9502,2300 RA 
Leiden, The Netherlands 

The photoinduced proton transfer from the OH group to the  endocyclic N atom in 7-hydroxy-8-(N-morpholino- 
methy1)quinoline (HMMQ) has been studied as a function of temperature at constant viscosity and as a function 
of viscosity at constant temperature for solutions in alkanols and in alkanenitriles. The overall rate constant, k ,  is 
determined by t h e  rotational motion of the side group. There is an energy barrier on t h e  reaction path, which 
does not depend on t h e  solvent. The motion along the reaction path is described as the Brownian motior;t of a 
particle suffering hydrodynamic friction and moving under t h e  influence of an intramolecular Coulomb potential 
and disappearing at a s ink .  The influence of dielectric friction is neglected. The friction coefficient is considered 
to be time-independent. The resulting Smoluchowski equation is solved numerically, using initial and boundary 
conditions imposed by intramolecular hydrogen bonds required for proton transfer. A good agreement between 
theory and experiment is obtained. A fractional power dependence of k on viscosity is obtained, which is not t h e  
same for alkanols and nitriles as solvents. This difference is attributed to a back transfer of t h e  proton to its 
original site in the case of nitriles. In the case of alkanols, the back transfer is blocked by hydrogen bonding of 
t h e  original site with t h e  solvent, after t h e  initial deprotonation of the  OH group. 

In several branches of chemistry there is a great deal of inter- 
est in a knowledge of the factors which influence the motion 
of flexible molecular chains or of nearly free rotors. A pre- 
requisite in a precise study of such motions is that the molec- 
ular conformations are known at the beginning and at the 
end of the trajectory. Recently we have drawn attention to 
the possibility of using a photoinduced intramolecular 
proton-transfer reaction to study the dynamics of a flexible 
alkyl chain. ' ** Since a proton-transfer process is restricted to 
an extremely narrow range of distances between donor and 
acceptor sites, it is conceivable to take advantage of proton 
transfer as a means of defining the initial and final conforma- 
tions. This might be achieved, when e.g. one end of a flexible 
chain carries a donor, while the acceptor is localized on the 
other end. Then the proton-transfer process is possible only 
in those conformations in which the end-to-end distance is 
comparable to a hydrogen-bonding distance. We have re- 
ported on a multistep intramolecular proton-transfer process 
in which such a situation is encountered twice. The report 
concerns the photoinduced transfer of a proton from the 
hydroxyl group to the N atom in the quinoline ring in 7- 
hydroxy-8-(N-morpholinomethyl)quinoline (HMMQ, Fig. 
1).2 In the electronic ground state, HMMQ exists only in the 
enol form (E), which has an intramolecular hydrogen bond 
between the hydroxyl group and the nitrogen atom N(2) in 
the morpholino ring. In the first excited singlet electronic 
state (E*) the acidity of the hydroxy proton is enhanced rela- 
tive to the ground state. Upon electronic excitation the 
proton is initially transferred adiabatically from the hydroxyl 
to the morpholino group, resulting in the zwitterionic tauto- 
mer (A*) of HMMQ. This first step was found to be very fast 
(kPT > 2 x 10" s-') and in accordance with the existence of 
a hydrogen bond prior to excitation. Since the excitation 
causes also a large increase in the proton affinity of the nitro- 
gen atom N( 1) in the quinoline ring, it may accept the proton 
residing on the morpholino ring, when this comes within 
hydrogen-bonding distance. The protonation of N( 1) pro- 
ceeds adiabatically and yields the electronically excited keto 
tautomer (K*) of HMMQ. Of course, the protonation of N(l) 
is feasible only after completion of the rotation of the side 
group over 180", as required to establish a hydrogen bond 
between protonated N(2) and N(1). This new hydrogen bond 

defines the final state of the rotational motion, whereas the 
initial state is defined by the hydrogen bond in E. Both the 
first (i.e. E* --+ A*) and last (A* -, K*) proton-transfer steps 
are accompanied by significant changes in the fluorescence 
spectrum of the excited sample. A study of the time depen- 
dence of these spectral changes provides information con- 
cerning the dynamics involved during the rotation. 

The efficiency of the intramolecular photoreaction of 
HMMQ just described depends on both the rate constant 
k,,, , for the transition from the initial to final conformation of 
the side group, and the rate constant k,  for the decay of the 
excited molecule along all its other available pathways. Only 
when k,,, is comparable to or larger than k ,  does one observe 
the double proton-transfer reaction. Therefore, chain 
dynamics may be studied, in photoexcited systems like 
HMMQ, up to a time limit of l /kd.  The photoreaction of 
HMMQ is in this regime and solvent polarity as well as 
solvent viscosity were shown to play a vital role in the excited 
state dynamics.2 In this paper we will discuss the influence of 

L 

Fig. 1 Structural formula of 7-hydroxy-8-(N-morpholinomethyl) 
quinoline (HMMQ). Also shown is the coordinate system, the rota- 
tional coordinate 8, the hydrodynamic radius r of the morpholino 
group, and the radius of gyration R 
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these latter factors on the magnitude of k,,,. Since in the 
overall tautomerization of HMMQ the rotation of the side 
chain is the rate-limiting process, we will consider here the 
motion of A* along the coordinate 8 (see Fig. 1). We will refer 
to the number of molecules of type A* as the population A* 
and will denote this number by NA*. The side chain rotation 
in the excited-state reaction of HMMQ is modelled as a 
damped motion of a Brownian particle on a potential surface. 
In this purely classical description, we will follow the treat- 
ment of the dynamics of activationless reactions, given by 
Bagchi et aL3 In our model a position-dependent sink is used 
to represent the actual loss of the proton on N(2) at the site 
of N(l), while a position-independent sink is used to mimic 
the decay of the population A* along all other pathways. As 
a consequence of the presence of the position-dependent sink, 
the time dependence of the population A* has a dependence 
on the motion of the Brownian particle over the potential 
surface. This motion is driven by a random force, due to the 
thermal motion of solvent molecules and is further influenced 
by both the inertial force arising from the potential and the 
viscous drag due to friction with the solvent. 

At first we will present the formal aspects of the theory and 
then we will describe the numerical procedure for finding the 
time dependence of the probability distribution for the popu- 
lation A*. Subsequently, we will discuss the numerical values 
of the parameters needed in the calculation of this distribu- 
tion. Finally, the results of the numerical calculation will be 
compared with experimental results. 

Equation of Motion 
The probability density of finding the excited anion (A*) with 
the side chain in an interval between 8 and 8 + d8 at a time 
between t and t + dt will be represented by P(6, t ) .  A Fokker- 
Planck type equation of motion for P(8, t )  is the starting 
point of our theoretical description :4-6 

The rotation coordinate 8 is defined in such a way, see Fig. 1, 
that 8 = 0 corresponds to the initial side-chain conformation 
when an H bond exists between the hydroxy group and the 
morpholino group. The final conformation in which an H 
bond is formed between the protonated aliphatic nitrogen 
and the quinoline nitrogen then corresponds to 8 = n. The 
position-dependent sink function is represented by S(8)  and 
assumes non-zero values in the neighbourhood of 8 = n only. 
kpT is a measure of the A* + K* proton-transfer rate con- 
stant from the sink, while k, represents the position- 
independent (non)-radiative decay rate constant. For 
overdamped motion of the Brownian particle along the 
excited-state potential surface the operator L is given by the 
Smoluchowski operator 

where D = k ,  T/r  is the diffusion coefficient and r is the rel- 
evant friction coefficient. The force on the Brownian particle 
is given by F =  -aV/a6, where V(8) is the excited-state 
potential. The term LP in eqn. (1) describes the motion of the 
Brownian particle over the potential surface, while [k,, S(6)  
+ k,]P represents the rate of loss of the population A* due 
to the proton-transfer process and electronic relaxation. Such 
an equation has been used by Bagchi et al.3*7 in the treatment 
of the dynamics of activationless reactions in solutions and 
also by Marcus and co-worker~'*~ in the theoretical study of 
solvent effects on non-adiabatic electron-transfer reactions. 

The initial, boundary and symmetry conditions for P(8, t )  
with which we solve eqn. (1) are given by 

P(6 = +n, t )  = 0 (3) 

P(0, t )  = P( - 8, t )  

The first of these relations exprksses the fact that P(6, t )  is 
normalized to 1 at t = 0. The quantity I represents the 
moment of inertia of the morpholino group with respect to 
the rotation axis. o is the frequency of the torsional vibration 
of this group around 8 = 0. Note that the boundary condi- 
tion at 8 = +.n depends on the analytical form of the sink 
function S(8) and on the magnitude of the proton-transfer rate 
constant kpT. The boundary condition given in the second 
relation is valid only if k,, = co, while the sink function is 
represented by a Dirac delta function, i.e. if S(8) = S(8 f n). 
This case corresponds to the infinite pinhole sink discussed 
by Bagchi et al. When k,, is finite or when S(8)  is not given 
by a Dirac delta function but by e.g. a Gaussian function, this 
boundary condition is inappropriate, because then P(6, t )  can 
assume any finite value at 8 = n. The third relation imposes a 
symmetry condition, originating from the definition of the 
coordinate 6. 

From the steady-state and time-resolved fluorescence 
experiments reported previously it has been concluded that 
the various conformations of A* are indistinguishable.2 This 
fact is taken into account by introducing the probability P,(t) 
of finding the Brownian particle still in the excited state at 
time t ,  regardless of the conformational coordinate 0. This 
probability is given by 

(4) 

If we set N,. = 1 at t = 0, P,(t) may be considered to rep- 
resent the population A* at time t ,  i.e. P,(t)  = NA.(t). It is the 
time dependence of NAt( t )  which is monitored in the time- 
resolved fluorescence experiments. The time-averaged decay 
rate k of NA*(t)  is now given by 

k - '  = r d t P , ( t )  ( 5 )  

Choice of Basis Functions 
We have not been successful in finding an analytical solution 
for P(6, t). Therefore we approached this problem numerically 
by expanding P(8, t )  into a set of orthonormal basis functions 
{Bn(8)}. The solution is then given by 

m 

P(6, t )  = 1 p n ( t P n ( e )  (6) 
n = O  

Using this expansion, eqn. (1) may be converted into a set of 
linear equations in the expansion coefficient pn(t). These can 
be written in the form of the matrix equation 

At) = M . p ( t )  (7) 

in which the matrix elements M,,,, )I are real and are given by 

M m ,  n = <Bm(e)  I - kPT S(e) - kd I B n ( 8 ) )  (8) 

The brackets in eqn. (8) indicate integration over 8 from -IT 
to n. The formal solution of eqn. (7) may be written as 

= e x p ( W  * do)  (9) 

where p(0) is obtained from P(8,O) given in eqn. (3). 
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Referring to Fig. 1 for the definition of the rotation coordi- 
nate 8, it is clear from symmetry considerations that the 
intramolecular potential V(0)  may be expanded in the set 
{cos n6} as the Fourier series 

co 

v(e) = c vn cos (10) 
n = O  

Note that the most appropriate choice of the basis set {Bn(8))  
depends on the analytical form of the sink function S(0). 
When S(8) is a Gaussian function, the most convenient choice 
is Bn(8) = cos n0. However, if S(8) is a delta function, the 
expansion of P(8, t )  in the set {cos no} results in a very 
awkward matrix M, which leads to numerical problems to be 
discussed later on. In the case of the delta function, it is pref- 
erable to expand P(6, t )  in the basis set {cos(n + 1/2)8}. Both 
of these functional forms of S(8) will be discussed separately. 

Gaussian Sink 
Consider a Gaussian sink, with an FWHM of J(8 In 203, 
centred around 8 = +?I. The function S(0) is then given by 

When P(8, t )  is expanded in the basis set Bn(0) = {cos no) ,  the 
elements of the matrix M are given by 

nC; 

25 M m , , ,  = -Dm2 -- ‘m,  m - kPT cH sm, m - kd 

where c, = J(2.n) for n = 0 and c, = J(n)  for n 3 1, and in 
which I,,,, and Sm, are given by 

03 n 

l m , n =  I(/+ n V v t + n S 1 , m -  I ( n - O ’ v n - 1 ’ t . m  
I =  0 l = O  

03 

+- 1 (I - n)’vt-n Sl, m 
l = n  

( -  l),+, 
S m , n  = - {exp[ -(m - r1)~0,’/2] 

2 

+ exp[ -(m + n)’a,2/2]} (13) 

When the Gaussian sink has a finite width, i.e. 0, > 0, the 
off-diagonal elements of S decrease exponentially as a func- 
tion of the index number. The basis set may then be trun- 
cated after a value n = nmax. Note that in the limit oS + 0, the 
Gaussian function becomes a delta function. 

Using Bn(8) = {cos n o ) ,  the resulting expression for Pe(t)  is 

Pe(t) = 2npdt) (14) 

Since the fluorescence intensity is proportional to Pe(t) ,  its 
time dependence is governed, according to eqn. (14), only by 
the first basis function. If the width (FWHM) of the initial 
Gaussian distribution is equal to J(8 In 203, the time- 
averaged decay constant of NA*(t) is given by 

03 

k - ’  = -2n 1 ( M - l ) o , n p n ( o )  
n = O  

03 

= -2n (M-l)o,nci exp(-n2a’/2) (15) 
n = O  

Infinite Pinhole Sink 
If the proton transfer from atom N(2) to atom N(l) takes 
place only within an extremely narrow range of distances 

between these atoms, the analytical form of the function S(0) 
may be taken as a delta function. When S(8) = S(0 + n), the 
Brownian particle is lost from the population N,, with unit 
probability upon arriving at 8 = n. Mathematically, this 
model corresponds to the well known problem of Brownian 
motion in the presence of an absorbing barrier.4-6 Then the 
boundary condition is given by the second relation in eqn. 
(3). In the case of the delta function sink, a convenient basis 
set for expanding P(0, t )  is Bn(8) = {cos (n + 1/2)0}, because 
each of these functions satisfies the boundary conditions. The 
elements of the matrix M are then given by 

in which lm* is given by 

co 

+ (I - nXl+ 3 ) V l - n  61, m (17) 
l = n  

The second term on the right-hand side of eqn. (1) does not 
contribute to the matrix elements of M in eqn. (16). This is a 
consequence of the choice of the basis Bn(8) = {cos(n + 1/ 
2)8}. From eqn. (13) it may be inferred that in the limit of an 
infinitesimal width of the Gaussian sink, i.e. as 0, -+ 0, all ele- 
ments of the matrix S are k 1. This result is also obtained by 
using Bn(8) = {cos no}  and S(0) = S(O k n). However, in the 
latter case unresolvable problems are encountered in the 
inversion of the matrix M. The reason for this is the sink 
contribution to the off-diagonal elements of M in eqn. (12). 
These difficulties do not appear in the case Bn(0) = {cos(n 
+ 1/2)8}. The off-diagonal elements of M in eqn. (16) are 

then completely determined by the expansion coefficients of 
the intramolecular potential as given by eqn. (10) and the 
basis set may again be truncated after a value n = nmex. 

In the basis Bn(0) = {cos(n + 1/2)8}, the expression for the 
probability for finding a particle in the excited state after a 
time t is given by 

Since the fluorescence intensity is proportional to P,(t), it 
follows from eqn. (18) that all basis functions contribute to 
the time dependence of this intensity. This is in contrast with 
the result in eqn. (14), where only the first basis function 
makes a contribution. 

The time-averaged relaxation rate of N,, obtained in the 
basis Bn(0) = {cos(n + 1/2)0) is given by 

AO) k - ’  = -f M-’  

Model Parameters 
A number of parameters entering in the numerical evaluation 
of P(0, t )  are determined by experimental facts. These are the 
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friction coefficient 5; the moment of inertia I of the rotating 
morpholino group; the frequency o of the torsional vibra- 
tion; the intramolecular potential V(8); the rate constants k,, 
and k d .  However, the width of the sink function cannot be 
derived from experiment, but has to be chosen a priori. 

Since the Brownian particle is in fact the protonated mor- 
pholino group, we assume hydrodynamic friction with stick 
boundary conditions in accordance with size and charge of 
the particle. We consider the morpholino group as a sphere 
with a hydrodynamic radius r. The friction coefficient 5 is 
then given by 

where q is the zero-frequency shear viscosity of the solvent 
and R represents the radius of gyration of the morpholino 
group with respect to the axis of rotation. The latter is 
defined by I = MR2, where A4 is the molar mass of the 
group. We set r equal to the value of the molecular radius, 
obtained from the molar mass M and the density p of liquid 
morpholine. This yields r = 3.26 A. Using bond lengths and 
angles in the morpholino group, we calculate the gyration 
radius with respect to the rotation axis, i.e. the axis passing 
through the C(8)-CH, bond in HMMQ (see Fig. 1). The 
result is R = 2.73 A. Taking o = 4 ps-' for the frequency of 
the oscillation of the particle around 8 = 0 and using eqn. (3), 
we obtain a width of 20" FWHM for P(6,O). 

The potential V(8)  arises from the Coulomb attraction 
between the two oppositely charged moieties in the zwitter- 
ion. The potential is evaluated by considering the positive 
charge to be fixed on atom N(2), while the negative charge is 
delocalized over the quinoline ring and its distribution 
changes continuously as a function of 8. This amounts to 

with d,(0) the distance between the positive charge e on N(2) 
and the negative charge p,(8) on the nth atom in the ring. In 
the coordinate system presented in Fig. 1, the atom N(2) 
moves along the circumference of a circle in the x-y plane 
with radius s and its position vector makes an angle 8 with 
the y axis. The coordinates of atom N(2) are (xN, y, , 0). The 
quinoline ring is located in the y-z plane. The nth atom in the 
ring has coordinates (0, y, , 2,). The distance d,(8) is given by 

d ,  = J(u, + b, cos 8) 

a, = s2 + y,2 + 2; 

b, = -2sy, 

Starting with the initial charge of the nth ring atom equal to 
p,(O), the coefficients v I  of V(0) are" 

Zm+ 112 

x (- 2)2m(-!--) ; E = 1, 2, 3, ... 

Zm+ 312 

x (- $)2m+1p) ; I = 0, 1,2, ... 

The 8 dependence of p,(B) will be taken into account in the 
following fashion 

(1 + cos 8) p,(e) = , p,(o); = 2, . . . , 11 

In this manner the negative charge will be accumulated 
entirely on the endocyclic N-atom (n = 1) at 6 = n. This is a 
useful feature of the model, because it implies instantaneous 
charge neutralization when the proton is delivered. 

The initial charge distribution in the anion of 7- 
hydroxyquinoline has been calculated quantum chemically, 
using the semiempirical CNDO algorithm. Using the bond 
lengths, the bond angles and these calculated values of p,(O), 
the values of the coefficients v l  in eqn. (21) have been calcu- 
lated. Coefficients smaller than vo are neglected in the 
summation. 

The required value for k ,  is set equal to the value of k ,  
determined experimentally in the case of the reference 
compound 2-hydroxy-l-(N-morpholinomethyl)naphthalene 
(HMMN) i.e. = kd = 4 x lo8 s - ' . ~  Since the rate constant for 
ESIPT processes within a hydrogen bond are usually larger 
than 1 O I 2  s - l ,  the rate constant k,, is assigned a value of 
1 1012 s - l  11-13 

The basis set in eqn. (6) is truncated at n = nmax. The value 
of nmax is found by increasing its values stepwise until the 
numerical result from eqn. (5) does not change by more than 
1 promille. The required value of nmax is found to increase 
with viscosity. In the high viscosity range, ca. 19 cP, its 
minimum value is found to be 50. This value is used through- 
out the whole viscosity range. 

Results and Discussion 
The potential V(8)  obtained after performing the summation 
in eqn. (21) exhibits a barrier of 88 meV at 8 = f43". This is 
shown in Fig. 2, which presents also a potential arising when 
the charge distribution is fixed, i.e. is independent of 6. In the 
latter case a barrier of 234 meV is obtained, nearly 10 times 
k,T at room temperature. An experimental value for the 
height of the barrier in V(8)  is obtained from the study of the 
isoviscous temperature dependence of k,,, . The experimental 
value, Eact, is 60 meV.14 The value of E,,, turns out to be 
independent of the solvent and its viscosity. The agreement 
between the value of E,,, and the calculated barrier height in 
V(8) indicates that the potential may be considered to be 
dominated by intramolecular interactions. 

Fig. 3 shows the distribution function P(8, t )  for q = 0.6 cP, 
obtained numerically for a pinhole sink at different times, 
with intervals of 20 ps. The value of 0.6 CP corresponds to the 
viscosity of methanol at 295 K. The initial stage of the evolu- 
tion of P(0, t )  is dominated by diffusion of the distribution, 
peaked initially around 8 = 0, towards large values of 8. 
When P(8, t )  builds up gradually at the larger values of 8, an 
asymmetric satellite appears just in front of the sink at 0 = n 
(insert in Fig. 3). The satellite results from the 0 dependence 
of the rate of diffusion of the Brownian particle along the 
trajectory. This becomes clear, when a comparison is made 
between particles just over the top of the barrier and those 
that have moved already much further in the direction of the 
sink. Both categories experience a force in the direction of the 
sink, but this force is smaller in the latter case, since the 
potential reaches a minimum at 8 = n (Fig. 2). As a conse- 
quence the first category moves faster than the latter, 
resulting in a temporary accumulation of particles near 
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0.0 0.5 1 .o 1.5 2.0 '2.5 3.0 3.5 
8/rad 

Rotational potential governing the ESIPT reaction in HMMQ as calculated with the semiempirical quantum-mechanical CNDO 5 Fig. 2 
method, using a polarisable, Ebar = 88 meV (A) and a static, Ebar = 234 meV (B) charge distribution in the mystern of the chromophore 

8 = n. The asymmetry of the satellite is a consequence of the 
loss of the proton at the sink. In the case of a pinhole sink, 
the variation in P(8, t )  has been studied numerically as a 
function of viscosity in the range of viscosities encountered in 
the linear alkanols. Fig. 4 shows the result for t = 40 ps. A 
strong viscosity dependence can be observed in the figure. 

Note that the area under the curves represent the survival 
probability P,(t) of the population A* at time t .  Fig. 5 pre- 
sents the time behaviour of P,(t)  in the same viscosity range. 
The main feature of the behaviour of P,(t) is a slow non- 
exponential decay at very short times ( t  < 10 ps), which 
changes gradually into an exponential decay at long times. 

1 I 1 I I I I 

-4 -2 0 
8/rad 

2 4 

Fig. 3 Distribution function P(8, t) at different times for a pinhole sink and a viscosity corresponding to methanol (q  = 0.6 cP). t = 0 ps (l), 20 
ps (2), 40 ps (3), 60 ps (4), 80 ps (5),  100 ps (6). Inset shows a close up of the region around 8 = n 
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h 
c 

0.005 
fL 

0.000 
, -4 -2 0 

Blrad 

2 

Fig. 4 
(2) propan-1-01; (3) pentan-1-01; (4) heptan-1-01; (5) decan-1-01 

Distribution function P(8, t) at t = 40 ps at different viscosities, corresponding to several n-alkanols at room temperature: (1) methanol; 

The short-time behaviour is controlled by the diffusion of the 
Brownian particle along the trajectory as well as by the loss 

decay constant for long times is equal to k ,  given by 

of excitation energy (kd). In contrast the long-time behaviour 
is governed nearly completely by k,, , because then the shape 
of the distribution P(8, t )  has become stationary. Then the 

0. c 

-0.1 

n n CI 
v 

0 

9 - 
-0 .2 

-0.3 

I I I I I I I I 

-2: 
-4 

t Y 
' 0  200 400 600 800 1000 

\l 

0 20 40 60 I80 I100 

t l P S  

Fig. 5 
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Decay of the excited-state population in several n-alkanols, using a pinhole sink: (1 )  methanol; (2) propan-1-01; (3) pentan-1-01; (4) 
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If the time required to reach the stationary shape of P(6, t )  is 
short, k ,  approaches the value of k defined in eqn. (5). Since 
the period in which the decay of P,(t) is non-exponential is 
merely ca. 20 ps, the value of k ,  is almost equal to the value 
of k calculated via eqn. (9, (16). Results similar to those 
obtained in the case of the pinhole sink are found when the 
sink is Gaussian. 

In Fig. 6 and 7 the rate constant k is compared with the 
experimental decay rate, kexp, of the population A*. Fig. 6 
shows k as a function of q in the case of a series of n-alkanols 
as solvents, whereas the results for the alkanenitriles are 
shown in Fig. 7. Table 1 presents the values of both k and 
kexp. The figures reveal a good agreement between the calcu- 
lated and experimental values of the decay constant of the 
population A*. Especially at the higher viscosities the fit is 
very good. The calculated values are larger than the exper- 
imental ones at viscosities <1.5 cP. This may be understood 
by bearing in mind that the model applies strictly only in the 
case of overdamped motion of the side chain, i.e. at high vis- 
cosity, when the velocity distribution of the Brownian par- 
ticle is thermally equilibrated. For low viscosities the 
calculated values are less accurate, since the velocity distribu- 
tion does not reach equilibrium fast enough. The proper form 

of the operator L in the case of low viscosities is 

An interesting point to mention is that in the case of the alkane- 
nitriles a reasonable agreement between theory and exper- 
iment, in the high viscosity range, could be achieved only by 
introducing in the model a Gaussian sink, &,(6), at 6 = 0, i.e. 
at the site where atom N(2) receives the proton. This sink 
describes the effect of a back-proton transfer to the original 
site, i.e. the 0 atom. The width of the Gaussian sink has been 
set equal to the width of f(0, 0), i.e. 20" (FWHM). The rate 
constant, k b ,  for the back transfer of the proton has been 
treated as an adjustable parameter in an additional term in 
eqn. (I), namely -kbSb(6)P(6, t ) .  The adjusted value of kb is 
5 x lo7 s-'. The absence of a back transfer in the case of 
alkanols must be considered to be a consequence of a hydro- 
gen bond between the solvent and the negatively charged 
oxygen atom, inhibiting the return of the proton. 

The calculated values of k reproduce the experimental frac- 
tional power dependence of the form k = a ~ - ~ .  The value of 
the exponent c deviates slightly from the experimental value 
ceXp in the case of the alkanols, where c = 0.62 and cexp = 

V / C  p 
Fig. 6 
values, while the line connects calculated points 

Rotational rate constant as a function of viscosity for the n-alkanol series at room temperature. The points correspond to experimental 

Table 1 Experimental and calculated decay rate constants of the excited-state population of the anionic tautomer of HMMQ 

methanol 
ethanol 
propan- 1-01 
butan- l-ol 
pentan- l-ol 
hexan- 1-01 
heptan- 1-01 
nonan-1-01 
decan- l-ol 

0.6 1 
1.26 
2.39 
3.18 
4.63 
6.3 
8.0 

12.3 
15.2 

3.64 f 0.30 
2.20 f 0.25 
1.67 k 0.17 
1.32 f 0.15 
1.04 f 0.15 
0.93 f 0.10 
0.82 f 0.13 
0.69 f 0.12 
0.59 f 0.10 

4.54 
2.42 
1.49 
1.23 
0.98 
0.83 
0.75 
0.64 
0.60 

acetonit rile 
propiononitrile 
butyronitrile 
valeronitrile 
hexanenitrile 
octanenitrile 
nonanenitrile 
undecanenitrile 

0.3 1 
0.45 
0.61 
0.78 
1.03 
1.8 
2.3 
3.3 

3.51 f 0.32 
2.99 +_ 0.25 
2.82 & 0.22 
2.33 f 0.21 
2.17 f 0.20 
1.92 f 0.20 
1.72 & 0.15 
1.52 f 0.11 

5.68 
5.04 
3.95 
3.28 
2.70 
1.93 
1.70 
1.46 
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tal values, while the line connects calculated points 

Rotational rate constant as a function of viscosity for the alkanenitrile series at room temperature. The points correspond to experimen- 

0.55. In the case of the alkanenitriles, where c = 0.64 and 
cexp = 0.37, the deviation is large. The large deviation in the 
case of the nitriles must be due to fact that the viscosities of 
the nitriles are in the low range, where the model is imperfect. 
The value of c turns out to depend strongly on the com- 
petition between the position-independent deactivation on 
the one hand and the position-dependent proton loss on the 
other hand. This may be understood, by comparing the 
results obtained in three different cases, namely in the limit 
where k,, = kb = 0; the limit where kd = 0, while the sinks 
are pinholes and the limit where kd = 0, while the sinks are 
Gaussian. In the first limit, the decay of N,, does not depend 
on viscosity, i.e. c = 0. In the second limit, c = 1. In the third 
limit, c < 1 and c approaches 0, when the width of the Gauss- 
ian sinks tends to 03. The last result arises, because of a pos- 
ition-independent decay of N,., similar to the decay with 
rate constant kd, whose importance increases with the width 
of the Gaussian sinks, resulting in a value of c intermediate 
between the first and second limit. In this manner, the pres- 
ence of the Gaussian sink &(e) is contributing to the 
reduction of the value of c for solutions in nitriles compared 
to solutions in alkanols. This effect of the relative importance 
of the position-independent and position-dependent sink 
terms on the value of c has been found previously by Bagchi 
et al. in the case of barrierless electronic r e l a~a t ion .~  

Since the proton crane carries an electrical charge, an influ- 
ence of dielectric friction on its motion is to be expected. The 
dielectric friction may be taken into account in the equation 
of motion given in eqn. (2), by writing the friction coefficient 
for the ith solvent as a sum of a hydrodynamic and a dielec- 
tric term, each of which is proportional to q, i.e. as 

(27) 

with a independent of solvent and pi depending on the dielec- 
tric permittivity ci of the ith solvent. The quantities p, a and I 
are the electric dipole moment of the solute, its cavity radius 
and the moment of inertia of the crane, respectively. The 
factor pi is given by' 

where zD(i) is the Debye dielectric relaxation time of the ith 
solvent. The factor pi becomes five times larger in going from 
methanol to n-decanol as solvent. Therefore we would not 
have obtained satisfactory agreement above between theory 
and experiment, unless [diel were negligible compared to chydr .  

The negligible magnitude of the dielectric friction seems to 
disagree with the conjecture that the dielectric friction 
becomes smaller than the hydrodynamic friction, provided 
the size of the charged Brownian particle is larger than the 
size of the solvent molecules.16 However, the disagreement is 
only apparent because our solvent molecules are effectively 
smaller than their physical size. This is due to the flexibility of 
their alkyl chains, which enables the Brownian particle to 
move through the solvent by displacing only small segments 
of the solvent molecules. 

Note that the fractional power dependence of k on q is 
obtained here by disregarding any time dependence in the 
friction coefficient <. Such a time dependence in < has been 
shown to be important, when the rate of fluctuations in the 
random force is comparable to the rate of barrier crossing.16 
In a forthcoming paper, experimental results on photoin- 
duced proton transfer in derivatives of HMMQ will be pre- 
sented, which cannot be understood within the present 
model, but which may be explained with the Grote and 
Hynes model, incorporating a time-dependent (. 
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